摘要We investigate thermodynamic properties of the rotating Bose gas in a trap, taking the charged ideal Bose gas in a magnetic field as an example. The system is equivalent to a neutral gas in a synthetic magnetic field. It is indicated that the Bose–Einstein condensation temperature is irrelevant to the magnetic field, conflicting with established intuition that the critical temperature decreases with the field increasing. The specific heat and Landau diamagnetization also exhibit intriguing behaviors.
Abstract:We investigate thermodynamic properties of the rotating Bose gas in a trap, taking the charged ideal Bose gas in a magnetic field as an example. The system is equivalent to a neutral gas in a synthetic magnetic field. It is indicated that the Bose–Einstein condensation temperature is irrelevant to the magnetic field, conflicting with established intuition that the critical temperature decreases with the field increasing. The specific heat and Landau diamagnetization also exhibit intriguing behaviors.
(Diamagnetism, paramagnetism, and superparamagnetism)
引用本文:
FAN Jing-Han;GU Qiang**;GUO Wei
. Thermodynamics of Charged Ideal Bose Gases in a Trap under a Magnetic Field[J]. 中国物理快报, 2011, 28(6): 60306-060306.
FAN Jing-Han, GU Qiang**, GUO Wei
. Thermodynamics of Charged Ideal Bose Gases in a Trap under a Magnetic Field. Chin. Phys. Lett., 2011, 28(6): 60306-060306.
[1] Schafroth M R 1955 Phys. Rev. 100 463
[2] Blatt J M and Butler S T 1955 Phys. Rev. 100 476
[3] May R M 1965 J. Math. Phys. 6 1462
Arias T A and Joannopoulos J D 1989 Phys. Rev. B 39 4071
Rojas H P 1996 Phys. Lett. B 379 148
Koh Shun-ichiro 2003 Phys. Rev. B 68 144502
[4] Daicic J, Frankel N E and Kowalenko V 1993 Phys. Rev. Lett. 71 1779
Daicic J, Frankel N E, Gailis R M and Kowalenko V 1994 Phys. Rep. 237 63
Daicic J, Frankel N E 1996 Phys. Rev. D 53 5745
[5] Toms D J 1994 Phys. Rev. B 50 3120
Standen G B and Toms D J 1999 Phys. Rev. E 60 5275
Kirsten K and Toms D J 1997 Phys. Rev. D 55 7797
[6] Alexandrov A S 1993 Phys. Rev. B 48 10571
Kabanov V V and Alexandrov A S 2005 Phys. Rev. B 71 132511
Alexandrov A S 2006 Phys. Rev. Lett. 96 147003
[7] Higbie J and Stamper-Kurn D M 2002 Phys. Rev. Lett. 88 090401
[8] Jaksch D and Zoller P 2003 New J. Phys. 5 56
Sorensen A S, Demler E and Lukin M D 2005 Phys. Rev. Lett. 94 086803
[9] Juzeliunas G and Ohberg P 2004 Phys. Rev. Lett. 93 033602
Juzeliunas G, Ruseckas J, Ohberg P and Fleischhauer M 2006 Phys. Rev. A 73 025602
[10] Lin Y J, Compton R L, Perry A R, Phillips W D, Porto J V and Spielman I B 2009 Phys. Rev. Lett. 102 130401
[11] Lin Y J, Compton R L, Jimenez-Garcia K, Porto J V and Spielman I B 2009 Nature 462 628
[12] Killian T C, Kulin S, Bergeson S D, Orozco L A, Orzel C and Rolston S L 1999 Phys. Rev. Lett. 83 4776
[13] Madison K W, Chevy F, Wohlleben W and Dalibard J 2000 Phys. Rev. Lett. 84 806
[14] Abo-Shaeer J R, Raman C, Vogels J M and Ketterle W 2001 Science 292 476
[15] Haljan P C, Coddington I, Engels P and Cornell E A 2001 Phys. Rev. Lett. 87 210403
[16] Hodby E, Hechenblaikner G, Hopkins S A, Marago O M and Foot C J 2001 Phys. Rev. Lett. 88 010405
[17] Bretin V, Stock S, Seurin Y and Dalibard J 2004 Phys. Rev. Lett. 92 050403
[18] Schweikhard V, Coddington I, Engels P, Mogendorff V P and Cornell E A 2004 Phys. Rev. Lett. 92 040404
[19] Kling S and Pelster A 2007 Phys. Rev. A 76 023609
[20] Pethick C J and Smith H 2002 Bose–Einstein Condensation in Dilute Gases (Cambridge: Cambridge University) Chap 2