Phonon Stability of Quantum Droplets in Dipolar Bose Gases
Fan Zhang and Lan Yin*
School of Physics, Peking University, Beijing 100871, China
Abstract :Stabilized by quantum fluctuations, dipolar Bose–Einstein condensates can form self-bound liquid-like droplets. However in the Bogoliubov theory, there are imaginary phonon energies in the long-wavelength limit, implying dynamical instability of this system. A similar instability appears in the Bogoliubov theory of a binary quantum droplet, and is removed due to higher-order quantum fluctuations as shown recently [Gu Q and Yin L 2020 Phys. Rev. B 102 220503(R)]. We study the excitation energy of a dipolar quantum droplet in the Beliaev formalism, and find that quantum fluctuations significantly enhance the phonon stability. We adopt a self-consistent approach without the problem of complex excitation energy in the Bogoliubov theory, and obtain a stable anisotropic sound velocity which is consistent with the superfluid hydrodynamic theory, but slightly different from the result of the extended Gross–Pitaevskii equation due to quantum depletion. A modified Gross–Pitaevskii equation in agreement with the Beliaev theory is proposed, which takes the effect of quantum fluctuations into account more completely.
收稿日期: 2022-04-07
Editors' Suggestion
出版日期: 2022-05-29
:
03.75.Kk
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
03.75.Nt
(Other Bose-Einstein condensation phenomena)
67.85.De
(Dynamic properties of condensates; excitations, and superfluid flow)
03.75.Hh
(Static properties of condensates; thermodynamical, statistical, and structural properties)
[1] Kadau H, Schmitt M, Wenzel M, Wink C, Maier T, Ferrier-Barbut I, and Pfau T 2016 Nature 530 194
[2] Ferrier-Barbut I, Kadau H, Schmitt M, Wenzel M, and Pfau T 2016 Phys. Rev. Lett. 116 215301
[3] Ferrier-Barbut I, Schmitt M, Wenzel M, Kadau H, and Pfau T 2016 J. Phys. B 49 214004
[4] Schmitt M, Wenzel M, Böttcher F, Ferrier-Barbut I, and Pfau T 2016 Nature 539 259
[5] Wenzel M, Böttcher F, Langen T, Ferrier-Barbut I, and Pfau T 2017 Phys. Rev. A 96 053630
[6] Chomaz L, Baier S, Petter D, Mark M, Wächtler F, Santos L, and Ferlaino F 2016 Phys. Rev. X 6 041039
[7] Cabrera C, Tanzi L, Sanz J, Naylor B, Thomas P, Cheiney P, and Tarruell L 2018 Science 359 301
[8] Cheiney P, Cabrera C, Sanz J, Naylor B, Tanzi L, and Tarruell L 2018 Phys. Rev. Lett. 120 135301
[9] Semeghini G, Ferioli G, Masi L, Mazzinghi C, Wolswijk L, Minardi F, Modugno M, Modugno G, Inguscio M, and Fattori M 2018 Phys. Rev. Lett. 120 235301
[10] D'Errico C, Burchianti A, Prevedelli M, Salasnich L, Ancilotto F, Modugno M, Minardi F, and Fort C 2019 Phys. Rev. Res. 1 033155
[11] Bisset R, Ardila L P N, and Santos L 2021 Phys. Rev. Lett. 126 025301
[12] Smith J C, Baillie D, and Blakie P 2021 Phys. Rev. Lett. 126 025302
[13] Lee T D, Huang K, and Yang C N 1957 Phys. Rev. 106 1135
[14] Petrov D S 2015 Phys. Rev. Lett. 115 155302
[15] Lima A R and Pelster A 2012 Phys. Rev. A 86 063609
[16] Bombin R, Boronat J, and Mazzanti F 2017 Phys. Rev. Lett. 119 250402
[17] Tanzi L, Lucioni E, Famà F, Catani J, Fioretti A, Gabbanini C, Bisset R N, Santos L, and Modugno G 2019 Phys. Rev. Lett. 122 130405
[18] Roccuzzo S M and Ancilotto F 2019 Phys. Rev. A 99 041601
[19] Böttcher F, Schmidt J N, Wenzel M, Hertkorn J, Guo M, Langen T, and Pfau T 2019 Phys. Rev. X 9 011051
[20] Li J R, Lee J, Huang W, Burchesky S, Shteynas B, Top F, Jamison A O, and Ketterle W 2017 Nature 543 91
[21] Léonard J, Morales A, Zupancic P, Esslinger T, and Donner T 2017 Nature 543 87
[22] Xiong Y and Yin L 2021 Chin. Phys. Lett. 38 070301
[23] Wang J B, Pan J S, Cui X, and Yi W 2020 Chin. Phys. Lett. 37 076701
[24] Wächtler F and Santos L 2016 Phys. Rev. A 94 043618
[25] Baillie D, Wilson R, Bisset R, and Blakie P 2016 Phys. Rev. A 94 021602
[26] Petrov D and Astrakharchik G 2016 Phys. Rev. Lett. 117 100401
[27] Kartashov Y V, Malomed B A, and Torner L 2019 Phys. Rev. Lett. 122 193902
[28] Saito H 2016 J. Phys. Soc. Jpn. 85 053001
[29] Macia A, Sánchez-Baena J, Boronat J, and Mazzanti F 2016 Phys. Rev. Lett. 117 205301
[30] Cinti F, Cappellaro A, Salasnich L, and Macrı̀ T 2017 Phys. Rev. Lett. 119 215302
[31] Böttcher F, Wenzel M et al. 2019 Phys. Rev. Res. 1 033088
[32] Hu H and Liu X J 2020 Phys. Rev. Lett. 125 195302
[33] Wang Y, Guo L, Yi S, and Shi T 2020 Phys. Rev. Res. 2 043074
[34] Gu Q and Yin L 2020 Phys. Rev. B 102 220503
[35] Beliaev S 1958 Sov. Phys.-JETP 7 299
[36] Lahaye T, Menotti C, Santos L, Lewenstein M, and Pfau T 2009 Rep. Prog. Phys. 72 126401
[37] Schützhold R, Uhlmann M, Xu Y, and Fischer U R 2006 Int. J. Mod. Phys. B 20 3555
[38] Hugenholtz N and Pines D 1959 Phys. Rev. 116 489
[39] Bisset R, Wilson R, Baillie D, and Blakie P 2016 Phys. Rev. A 94 033619
[40] Baillie D, Wilson R, and Blakie P 2017 Phys. Rev. Lett. 119 255302
[41] Aybar E and Oktel M 2019 Phys. Rev. A 99 013620
[42] Xiong Y and Yin L 2022 Phys. Rev. A 105 053305
[43] Natale G, van Bijnen R, Patscheider A, Petter D, Mark M, Chomaz L, and Ferlaino F 2019 Phys. Rev. Lett. 123 050402
[44] Pastukhov V 2017 Phys. Rev. A 95 023614
[1]
. [J]. 中国物理快报, 2022, 39(7): 70304-.
[2]
. [J]. 中国物理快报, 2022, 39(7): 76101-076101.
[3]
. [J]. 中国物理快报, 2022, 39(2): 20301-.
[4]
. [J]. 中国物理快报, 2021, 38(9): 90302-.
[5]
. [J]. 中国物理快报, 2020, 37(11): 117102-117102.
[6]
. [J]. 中国物理快报, 2019, 36(12): 124701-.
[7]
. [J]. 中国物理快报, 2019, 36(9): 90302-.
[8]
. [J]. 中国物理快报, 2018, 35(5): 50301-.
[9]
. [J]. 中国物理快报, 2018, 35(1): 10301-.
[10]
. [J]. 中国物理快报, 2017, 34(7): 70303-.
[11]
. [J]. 中国物理快报, 2016, 33(04): 40302-040302.
[12]
. [J]. 中国物理快报, 2015, 32(06): 60304-060304.
[13]
. [J]. 中国物理快报, 2015, 32(01): 10303-010303.
[14]
. [J]. 中国物理快报, 2014, 31(03): 30302-030302.
[15]
. [J]. 中国物理快报, 2014, 31(1): 10303-010303.