Emergent Quantum Dynamics of Vortex-Line under Linear Local Induction Approximation
Gui-Hao Jia** , Yu Xu, Xiao Kong, Cui-Xian Guo, Si-Lei Liu, Su-Peng Kou
Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875
Abstract :Using the linear local induction approximation, we investigate the self-induced motion of a vortex-line that corresponds to the motion of a particle in quantum mechanics. Provided Kelvin waves, the effective Schrödinger equation, physical quantity operators, and the corresponding path-integral formula can be obtained. In particular, the effective Planck constant defined by parameters of vortex-line motion shows the mathematical relation between the two fields. The vortexline–particle mapping may help in understanding particle motion in quantum mechanics.
收稿日期: 2019-07-09
出版日期: 2019-11-25
:
47.32.-y
(Vortex dynamics; rotating fluids)
03.75.Kk
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
03.65.-w
(Quantum mechanics)
[1] Thomson W 1867 Trans. R. Soc. Edinburgh 25 217 [2] Hall H E 1958 Proc. R. Soc. A 245 546 [3] Batchelor G K 1970 An Introduction Fluid Dynamics (Cambridge: Cambridge University Press) [4] Hasimoto H 1972 J. Fluid Mech. 51 477 [5] Donnelly R J and Barenghi C F 1998 J. Phys. Chem. Ref. Data 27 1217 [6] Boffetta G, Celani A, Dezzani D, Laurie J and Nazarenko S 2009 J. Low Temp. Phys. 156 193 [7] Salman H 2014 J. Phys.: Conf. Ser. 544 012005 [8] Salman H 2013 Phys. Rev. Lett. 111 165301 [9] Vinen W F and Niemela J J 2002 J. Low Temp. Phys. 128 167 [10] Laurie J, L'Vov V S, Nazarenko S and Rudenko O 2010 Phys. Rev. B 81 104526 [11] Schrö dinger E 1926 Ann. Phys. 384 361 [12] Malomed B 2005 Nonlinear Schrödinger Equations in Encyclopedia (Cambridge: Farlex) [13] Batygin K 2018 Mon. Not. R. Astron. Soc. 475 5070 [14] Barenghi C F, Donnelly R J and Vinen W F 1983 J. Low Temp. Phys. 52 189 [15] Baggaley A W 2012 J. Low Temp. Phys. 168 18 [16] Fonda E, Meichle D P, Ouellette N T, Hormoz S and Lathrop D P 2014 Proc. Natl. Acad. Sci. USA 111 4707 [17] Tong B G, Yin X Y and Zhu K Q 2009 Theory of Vorticity (Beijing: China Science and Technology University Press) (in Chinese) [18] Feynman R P 1955 Prog. Low Temp. Phys. 1 17 [19] Kou S P 2017 Int. J. Mod. Phys. B 31 1750241
[1]
. [J]. 中国物理快报, 2019, 36(11): 114302-.
[2]
. [J]. 中国物理快报, 2012, 29(8): 84702-084702.
[3]
XU Tao. Topological Structure of Vortices in Multicomponent Bose-Einstein Condensates [J]. 中国物理快报, 2009, 26(9): 96701-096701.
[4]
XIA Yong;LU De-Tang;LIU Yang;XU You-Sheng. Lattice Boltzmann Simulation of the Cross Flow Over a Cantilevered and Longitudinally Vibrating Circular Cylinder [J]. 中国物理快报, 2009, 26(3): 34702-034702.
[5]
SONG Jun;SONG Jin-Bao. Effects of Buoyancy on Langmuir Circulation [J]. 中国物理快报, 2008, 25(5): 1742-1745.
[6]
SUN Liang. Essence of Inviscid Shear Instability: a Point View of Vortex Dynamics [J]. 中国物理快报, 2008, 25(4): 1343-1346.
[7]
QIAN Su-Ping;TIAN Li-Xin. Modification of the Clarkson--Kruskal Direct Method for a Coupled System [J]. 中国物理快报, 2007, 24(10): 2720-2723.
[8]
TANG Xiao-Yan;HUANG Fei;;LOU Sen-Yue;. Variable Coefficient KdV Equation and the Analytical Diagnoses of a Dipole Blocking Life Cycle [J]. 中国物理快报, 2006, 23(4): 887-890.