摘要We propose a scheme for the generation of entangled states for multiple atoms trapped in three distant cavities connected by two identical single-mode fibers. Compared with the previous schemes, the distinct advantages of the proposed scheme are: First, all the cavities in the proposed protocol can interact with each other freely, which is important in quantum communication and distributed quantum computation. Secondly, in the scheme, the atoms, cavities, and fiber mode are in resonance. Thus, the required interaction time is short, which is important in view of decoherence. In principle, the proposed scheme can be extended to generate n atoms entangled states.
Abstract:We propose a scheme for the generation of entangled states for multiple atoms trapped in three distant cavities connected by two identical single-mode fibers. Compared with the previous schemes, the distinct advantages of the proposed scheme are: First, all the cavities in the proposed protocol can interact with each other freely, which is important in quantum communication and distributed quantum computation. Secondly, in the scheme, the atoms, cavities, and fiber mode are in resonance. Thus, the required interaction time is short, which is important in view of decoherence. In principle, the proposed scheme can be extended to generate n atoms entangled states.
[1] Ekert A K 1991 Phys. Rev. Lett. 67 661
[2] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[3] Bennett C H, Brassard G and Cépeau C, Jozsa R, Peres A, and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[4] Deutsch D and Jozsa R 1992 Proc. R. Soc. Lond. A 439 553
[5] Bruß D, Vincenzo D P and Ekert A 1998 Phys. Rev. A 57 2368
[6] Zhang C W, Li C F, Wang Z Y, and Guo G C 2000 Phys. Rev. A 62 042302
Wu Y and Yang X X 2007 Phys. Rev. Lett. 98 013601
[7] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221
[8] Clark S, Peng A, Gu M and Parkins S 2003 Phys. Rev. Lett. 91 177901
[9] Browne D E, Plenio M B and Huelga S F 2003 Phys. Rev. Lett. 91 067901
[10] Pellizzari T 1997 Phys. Rev. Lett. 79 5242
[11] Duan L M and Kimble H J 2003 Phys. Rev. Lett. 90 253601
[12] Serafini A, Mancini S and Bose S 2006 Phys. Rev. Lett. 96 010503
[13] Yin Z Q and Li F L 2007 Phys. Rev. A 75 012324
[14] Ye S Y, Zhong Z R and Zheng S B 2008 Phys. Rev. A 77 014303
[15] Zheng S B 2009 Appl. Phys. Lett. 94 154101
[16] Yang Z B, Wu H Z, Su W J and Zheng S B 2009 Phys. Rev. A 80 012305
[17] Song J, Xia Y and Song H S 2007 J. Phys. B: At. Mol. Opt. Phys. 40 4503
[18] Zheng S B 2009 Eur. Phys. J. D 54 719
[19] Lü X Y, Si L G, Hao X Y and Yang X X 2009 Phys. Rev. A 79 052330
[20] Zhong Z R 2010 Opt. Commun. 283 1972
[21] Li Y L and Fang M F 2010 Chin. Phys. B 19 030311
[22] Serafini A, Mancini S and Bose1 S 2006 Phys. Rev. Lett. 96 010503
[23] Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656
[24] Cirac J I, Ekert A K, Huelga S F and Macchiavello C 1999 Phys. Rev. A 59 4249
[25] Xue P, Li C F and Guo G C 2001 Phys. Rev. A 64 032305
[26] Zheng S B 2002 Phys. Rev. A 66 014103
[27] Ye M Y, Zhang Y S and Guo G C 2004 Phys. Rev. A 69 022310
[28] Groisman B and Reznik B 2005 Phys. Rev. A 71 032322
[29] ShimizuK, Tamaki K and Fukasak H 2009 Phys. Rev. A 80 022323
[30] Modawska J and Grudka A 2008 Phys. Rev. Lett. 100 110503
[31] Mare X, Hagley E, Nogues G, Goy P, Brune M, Raimond J M and Haroche S 1997 Phys. Rev. Lett. 79 769