Generation of Enhanced Three-Mode Continuously Variable Entanglement
YU You-Bin1**, WANG Huai-Jun1, FENG Jin-Xia2
1School of Science, Ningbo University of Technology, Ningbo 315211 2State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006
Generation of Enhanced Three-Mode Continuously Variable Entanglement
YU You-Bin1**, WANG Huai-Jun1, FENG Jin-Xia2
1School of Science, Ningbo University of Technology, Ningbo 315211 2State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006
摘要The generation of enhanced three-mode continuously variable (CV) entanglement via difference-frequency amplification in an optical cavity above the threshold is investigated. The quantum entanglement characteristics among the pump, signal, and idler beams are demonstrated by applying a sufficient inseparability criterion for CV entanglement proposed by van Loock and Furusawa. Bright three-mode CV entanglement with different frequencies can be generated in this simple system when the optical cavity operates above its threshold, and the best three-mode CV entanglement can be obtained when the pump threshold parameter is modulated at about σ=1.3.
Abstract:The generation of enhanced three-mode continuously variable (CV) entanglement via difference-frequency amplification in an optical cavity above the threshold is investigated. The quantum entanglement characteristics among the pump, signal, and idler beams are demonstrated by applying a sufficient inseparability criterion for CV entanglement proposed by van Loock and Furusawa. Bright three-mode CV entanglement with different frequencies can be generated in this simple system when the optical cavity operates above its threshold, and the best three-mode CV entanglement can be obtained when the pump threshold parameter is modulated at about σ=1.3.
[1] Kimble H J 2008 Nature 453 1023
[2] Coelho A S et al 2009 Science 326 823
[3] Reid M D and Drummond P D 1988 Phys. Rev. Lett. 60 2731
Reid M D and Drummond P D 1989 Phys. Rev. A 40 4493
[4] Ou Z Y et al 1992 Phys. Rev. Lett. 68 3663
[5] Villar A S et al 2005 Phys. Rev. Lett. 95 243603
Li Y M et al 2010 Appl. Phys. Lett. 97 031107
[6] Villar A S et al 2006 Phys. Rev. Lett. 97 140504
[7] Eberly J H and Howell J C 2010 Nature Photon. 4 12
[8] Pfister O et al 2004 Phys. Rev. A 70 020302
[9] Guo J et al 2005 Phys. Rev. A 71 034305
[10] Yu Y B et al 2006 Phys. Rev. A 74 042332
Yu Y B et al 2008 Phys. Rev. A 77 032317
[11] Olsen and M K, Bradley A S 2006 Phys. Rev. A 74 063809
Midgley S L W et al 2010 Phys. Rev. A 81 063834
[12] Zhang X H et al 2010 Chin. Phys. Lett. 27 094208
Zhu Y Z et al 2010 Chin. Phys. Lett. 27 044210
Yu Y B et al 2011 Phys. Rev. A 83 012321
[13] Fabre C et al 1990 Quantum Opt. 2 159
[14] Drummond P D et al 1980 Opt. Acta 27 321
Drummond P D et al 1981 Opt. Acta 28 211
[15] Pennarun C, Bradley A S and Olsen M K 2007 Phys. Rev. A 76 063812
[16] Collett M J and Gardiner C W 1984 Phys. Rev. A 30 1386
[17] van Loock P and Furusawa A 2003 Phys. Rev. A 67 052315