Effect of Quantum Coins on Two-Particle Quantum Walks
GAN Shu** , HE Xing-Dao, LIU Bin, FENG Cui-Di
Key Laboratory of Nondestructive Test (Ministry of Education), Nanchang Hangkong University, Nanchang 330063
Abstract :We numerically study the effect of the quantum coins on the two-particle quantum walks on an infinite line. Both non-interacting and interacting particles are considered. The joint probability as well as the bunching or anti-bunching behavior are greatly affected by the phase factors in the coin operation. Further, the spatial correlation can be maximized by choosing appropriate coin parameters. The entanglement between the two particles can be adjusted in the same manner.
收稿日期: 2015-02-06
出版日期: 2015-09-02
:
03.67.Bg
(Entanglement production and manipulation)
05.30.-d
(Quantum statistical mechanics)
05.40.Fb
(Random walks and Levy flights)
[1] Aharonov Y, Davidovich L and Zagury N 1993 Phys. Rev. A 48 1687 [2] Kempe J 2003 Contemp. Phys. 44 307 [3] Tregenna B, Flanagan W, Maile R and Kendon V 2003 New J. Phys. 5 83 [4] Chandrashekar C M, Srikanth R and Banerjee S 2007 Phys. Rev. A 76 022316 [5] Chandrashekar C M, Srikanth R and Laflamme R 2008 Phys. Rev. A 77 032326 [6] Carneiro I, Loo M, Xu X, Girerd M, Kendon V and Knight P L 2005 New J. Phys. 7 156 [7] Abal G, Siri R, Romanelli A and Donangelo R 2006 Phys. Rev. A 73 042302 [8] Omar Y, Paunkovi? N, Sheridan L and Bose S 2006 Phys. Rev. A 74 042304 [9] ?tefaňák M, Kiss T, Jex I and Mohring B 2006 J. Phys. A: Math. Gen. 39 14965 [10] Pathak P K and Agarwal G S 2007 Phys. Rev. A 75 032351 [11] Berry S D and Wang J B 2011 Phys. Rev. A 83 042317 [12] ?tefaňák M, Barnett S M, Kollár B, Kiss T and Jex I 2011 New J. Phys. 13 033029 [13] Rohde P P, Schreiber A, ?tefaňák M, Jex I and Silberhorn C 2011 New J. Phys. 13 013001 [14] Chandrashekar C M and Busch T 2012 Quantum Inf. Process. 11 1287 [15] Peruzzo A et al 2010 Science 329 1500 [16] Owens J O et al 2011 New J. Phys. 13 075003 [17] Sansoni L et al 2012 Phys. Rev. Lett. 108 010502 [18] Brun T A, Carteret H A and Ambainis A 2003 Phys. Rev. A 67 052317 [19] Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
[1]
. [J]. 中国物理快报, 2017, 34(4): 40302-040302.
[2]
. [J]. 中国物理快报, 2016, 33(07): 70303-070303.
[3]
. [J]. 中国物理快报, 2015, 32(09): 90301-090301.
[4]
. [J]. 中国物理快报, 2014, 31(06): 60301-060301.
[5]
. [J]. 中国物理快报, 2014, 31(05): 50302-050302.
[6]
. [J]. 中国物理快报, 2013, 30(7): 70302-070302.
[7]
. [J]. 中国物理快报, 2013, 30(6): 60302-060302.
[8]
. [J]. Chin. Phys. Lett., 2013, 30(2): 24213-024213.
[9]
REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches [J]. 中国物理快报, 2012, 29(6): 60305-060305.
[10]
SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments [J]. 中国物理快报, 2012, 29(4): 40301-040301.
[11]
YU You-Bin**;WANG Huai-Jun;FENG Jin-Xia
. Generation of Enhanced Three-Mode Continuously Variable Entanglement [J]. 中国物理快报, 2011, 28(9): 90304-090304.
[12]
Salman Khan**;M. Khalid Khan
. Quantum Stackelberg Duopoly in a Noninertial Frame [J]. 中国物理快报, 2011, 28(7): 70202-070202.
[13]
LIAO Qing-Hong;FANG Guang-Yu;WANG Ji-Cheng;AHMAD Muhammad Ashfaq;LIU Shu-Tian**
. Control of the Entanglement between Two Josephson Charge Qubits [J]. 中国物理快报, 2011, 28(6): 60307-060307.
[14]
ZHANG Miao;JIA Huan-Yu;WEI Lian-Fu;**
. Entangling a Series of Trapped Ions by Moving Cavity Bus [J]. 中国物理快报, 2011, 28(6): 64213-064213.
[15]
ZHU Zhi-Cheng;TU Tao**;GUO Guo-Ping
. Multipartite Spin Entangled States in Quantum Dots with a Quantum Databus Based on Nano Electro-Mechanical Resonator [J]. 中国物理快报, 2011, 28(4): 40301-040301.