摘要We investigate persistent charge and spin currents of a one-dimensional ring with Rashba spin--orbit coupling and connected asymmetrically to two external leads spanned with angle φ0. Because of the asymmetry of the structure and the spin-reflection, the persistent charge and spin currents can be induced. The magnification of persistent currents can be obtained when tuning the energy of incident electron to the sharp zero and sharp resonance of transmission depending on the Aharonov--Casher (AC) phase due to the spin--orbit coupling and the angle spanned by two leads φ0. The general dependence of the charge and spin persistent currents on these parameters is obtained. This suggests a possible method of controlling the magnitude and direction of persistent currents by tuning the AC phase and φ0, without the electromagnetic flux though the ring.
Abstract:We investigate persistent charge and spin currents of a one-dimensional ring with Rashba spin--orbit coupling and connected asymmetrically to two external leads spanned with angle φ0. Because of the asymmetry of the structure and the spin-reflection, the persistent charge and spin currents can be induced. The magnification of persistent currents can be obtained when tuning the energy of incident electron to the sharp zero and sharp resonance of transmission depending on the Aharonov--Casher (AC) phase due to the spin--orbit coupling and the angle spanned by two leads φ0. The general dependence of the charge and spin persistent currents on these parameters is obtained. This suggests a possible method of controlling the magnitude and direction of persistent currents by tuning the AC phase and φ0, without the electromagnetic flux though the ring.
ZHANG Xi-Hua;XIONG Shi-Jie. Persistent Spin and Charge Currents in Open Conducting Ring Subjected to Rashba Spin--Orbit Coupling[J]. 中国物理快报, 2008, 25(5): 1844-1847.
ZHANG Xi-Hua, XIONG Shi-Jie. Persistent Spin and Charge Currents in Open Conducting Ring Subjected to Rashba Spin--Orbit Coupling. Chin. Phys. Lett., 2008, 25(5): 1844-1847.
[1] Prinz A G 1998 Science 282 1660 [2] Wolf S A et al 2001 Science 294 1488 [3] Datta S and Das B, 1990 Appl. Phys. Lett 56665 [4] Murakami S et al 2003 Science 301 1348 [5] Sinova J et al 2004 Phys. Lett. 92 126603 [6] Yao Y and Fang Z 2005 Phys. Rev. Lett. 95156601 [7] Jiang Z F et al 2005 Phys. Rev. B 72 045201 [8] Dai X et al 2006 Phys. Rev. Lett. 96 086802 [9] Fu Y P et al 2007 J. Phys.: Condensed Matter 19 496220 Huang F J et al 2007 Europhys. Lett. 79 10004 [10] Byers N and Yang C 1961 Phys. Rev. Lett. 746 [11] B\"{uttiker M et al 1983 Phys. Rev. Lett. 96 365 [12] Wohlleben D et al 1991 Phys. Rev. Lett. 663191 [13] B\"{uttiker M 1985 Phys. Rev. B 32 1846 [14] Pascaud M et al 1999 Phys. Rev. Lett. 82 4512 [15] Yi J et al 2002 Phys. Rev. B 65 033305 [16] Rabaud W et al 2001 Phys. Rev. Lett. 86 3124 [17] Aharonov Y and Bohm D 1995 Phys. Rev. 115 485 [18] Aharonov Y and Casher A 1984 Phys. Rev. Lett. 53 319 [19] Splettstoesser J et al 2003 Phys. Rev. B 68165341 [20] Zhang Y T et al 2005 Phys. Rev. B 72 2566 [21] Citro R and Romeo F 2007 Phys. Rev. B 75073306 [22] Griffith S 1953 Trans. Faraday Soc. 49 345 [23] Xia J B 1992 Phys. Rev. B 45 3593 [24] Rashba I E 1960 Tverd Fiz. Tela (Leningrad) 21224 [25] Frustaglia D and Richter K 2004 Phys. Rev. B 69 235310 [26] Molnar B et al 2004 Phys. Rev. B 69 155335