摘要Quantum coherence is the most distinct feature of quantum mechanics. However, inevitable decoherence processes will finally destroy it and make the "Schrödinger's cat" invisible in our classical world. In this "quantum-to-classical transition", the so-called "largeness" plays a critical role. We experimentally study the largeness phenomena in the bipartite entanglement decay process through a depolarizing channel with two-photon entangled states generated from a spontaneous parametric down-conversion source. Our experiment demonstrates how the speed of entanglement decay and the time when "entanglement sudden death" happens depend on the size of the system exposed to the environment noise.
Abstract:Quantum coherence is the most distinct feature of quantum mechanics. However, inevitable decoherence processes will finally destroy it and make the "Schrödinger's cat" invisible in our classical world. In this "quantum-to-classical transition", the so-called "largeness" plays a critical role. We experimentally study the largeness phenomena in the bipartite entanglement decay process through a depolarizing channel with two-photon entangled states generated from a spontaneous parametric down-conversion source. Our experiment demonstrates how the speed of entanglement decay and the time when "entanglement sudden death" happens depend on the size of the system exposed to the environment noise.
[1] Zurek W H 2003 Rev. Mod. Phys. 75 715
[2] Joos E and Zeh H D 1985 Z. Phys. B 59 223
[3] Wheeler J A and Zurek W H 1983 Quantum Theory and Measurement (Princeton: Princeton University Press)
[4] Joos E and Zeh H D 1985 Z. Phys. B 59 223
[5] Milburn G J and Holmes C A 1986 Phys. Rev. Lett. 56 2237
[6] Albrecht A 1992 Phys. Rev. D 46 5504
[7] Eberly J H and Yu T 2007 Science 316 555
[8] Brune M, Hagley E, Dreyer J, Maître X, Maali A, Wunderlich C, Raimond J M and Haroche S 1996 Phys. Rev. Lett. 77 4887
[9] Schrödinger E 1935 Proc. Cambridge Philos. Soc. 31 555
[10] Preskill J 2000 Lecture Notes on Quantum Information and Quantum Computation http://www.theory.caltech.edu/people/preskill/ph229
[11] Nielson M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University)
[12] Eberly J H and Yu T 2004 Phys. Rev. Lett. 93 140404
[13] Eberly J H and Yu T 2006 Phys. Rev. Lett. 97 140403
[14] Almeida M P, deMelo F, Hor-Meyll M, Salles A, Walborn S P, Souto Ribeiro P H and Davidovich L 2007 Science 316 579
[15] Laurat J, Choi K S, Deng H, Chou C W and Kimble H J 2007 Phys. Rev. Lett. 99 180504
[16] Shor P W 1996 37th Symposium on Foundations of Computing (IEEE Computer Society Press) p 56
[17] Shor P 1995 Phys. Rev. A 52 2493
[18] Steane A 1996 Phys. Rev. Lett. 77 793
[19] Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275
[20] Horodecki M, Horodecki P and Horodecki R 1997 Phys. Rev. Lett. 78 574
[21] Życzkowski K, Horodecki P, Horodecki M and Horodecki R 2001 Phys. Rev. A 65 012101
[22] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[23] Takeuchi S 2001 Opt. Lett. 26 843
[24] Kurtsiefer C, Oberparleiter M and Weinfurter H 2001 J. Mod. Opt. 48 1997
[25] Niu X L, Huang Y F, Guo G Y, Guo G C and Ou Z Y 2008 Opt. Lett. 33 968
[26] Maniscalco S, Francica F Zaffino R L, Gullo N L and Plastina F 2008 Phys. Rev. Lett. 100 090503
[27] Bellomo B, Franco R L, Maniscalco S and Compagno G 2008 Phys. Rev. A 78 060302(R)
[28] Tong Q J, An J H, Luo H G and Oh C H 2010 Phys. Rev. A 81 052330