$\mathcal{PT}$ Symmetry of a Square-Wave Modulated Two-Level System
Liwei Duan1 , Yan-Zhi Wang1 , and Qing-Hu Chen1,2*
1 Department of Physics and Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou 310027, China2 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract :We study a non-Hermitian two-level system with square-wave modulated dissipation and coupling. Based on the Floquet theory, we achieve an effective Hamiltonian from which the boundaries of the $\mathcal{PT}$ phase diagram are captured exactly. Two kinds of $\mathcal{PT}$ symmetry broken phases are found, whose effective Hamiltonians differ by a constant $\omega / 2$. For the time-periodic dissipation, a vanishingly small dissipation strength can lead to the $\mathcal{PT}$ symmetry breaking in the $(2k-1)$-photon resonance ($\varDelta = (2k-1) \omega$), with $k=1,2,3\dots$ It is worth noting that such a phenomenon can also happen in $2k$-photon resonance ($\varDelta = 2k \omega$), as long as the dissipation strengths or the driving times are imbalanced, namely $\gamma_0 \ne - \gamma_1$ or $T_0 \ne T_1$. For the time-periodic coupling, the weak dissipation induced $\mathcal{PT}$ symmetry breaking occurs at $\varDelta_{\rm eff}=k\omega$, where $\varDelta_{\rm eff}=(\varDelta_0 T_0 + \varDelta_1 T_1)/T$. In the high frequency limit, the phase boundary is given by a simple relation $\gamma_{\rm eff}=\pm\varDelta_{\rm eff}$.
收稿日期: 2020-04-11
出版日期: 2020-07-28
:
11.30.Er
(Charge conjugation, parity, time reversal, and other discrete symmetries)
42.82.Et
(Waveguides, couplers, and arrays)
03.65.Yz
(Decoherence; open systems; quantum statistical methods)
42.50.-p
(Quantum optics)
[1] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[2] Bender C M, Brody D C and Jones H F 2002 Phys. Rev. Lett. 89 270401
[3] Bender C M 2005 Contemp. Phys. 46 277
[4] Bender C M 2007 Rep. Prog. Phys. 70 947
[5] Konotop V V, Yang J and Zezyulin D A 2016 Rev. Mod. Phys. 88 035002
[6] Ruschhaupt A, Delgado F and Muga J G 2005 J. Phys. A 38 L171
[7] El-Ganainy R, Makris K G, Christodoulides D N and Musslimani Z H 2007 Opt. Lett. 32 2632
[8] Makris K G, El-Ganainy R, Christodoulides D N and Musslimani Z H 2008 Phys. Rev. Lett. 100 103904
[9] Musslimani Z H, Makris K G, El-Ganainy R and Christodoulides D N 2008 Phys. Rev. Lett. 100 030402
[10] Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A and Christodoulides D N 2009 Phys. Rev. Lett. 103 093902
[11] Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nat. Phys. 6 192
[12] Feng L, Ayache M, Huang J, Xu Y L, Lu M H, Chen Y F, Fainman Y and Scherer A 2011 Science 333 729
[13] Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N and Peschel U 2012 Nature 488 167
[14] Hodaei H, Miri M A, Heinrich M, Christodoulides D N and Khajavikhan M 2014 Science 346 975
[15] Luo X, Huang J, Zhong H, Qin X, Xie Q, Kivshar Y S and Lee C 2013 Phys. Rev. Lett. 110 243902
[16] Weimann S, Kremer M, Plotnik Y, Lumer Y, Nolte S, Makris K G, Segev M, Rechtsman M C and Szameit A 2017 Nat. Mater. 16 433
[17] Xiao L, Wang K, Zhan X, Bian Z, Kawabata K, Ueda M, Yi W and Xue P 2019 Phys. Rev. Lett. 123 230401
[18] Zhang D, Luo X Q, Wang Y P, Li T F and You J 2017 Nat. Commun. 8 1368
[19] Zhang G Q and You J Q 2019 Phys. Rev. B 99 054404
[20] Shen R C, Zhang G Q, Wang Y P and You J Q 2019 Acta Phys. Sin. 68 230305
[21] Lee T E 2016 Phys. Rev. Lett. 116 133903
[22] Shen H, Zhen B and Fu L 2018 Phys. Rev. Lett. 120 146402
[23] Kunst F K, Edvardsson E, Budich J C and Bergholtz E J 2018 Phys. Rev. Lett. 121 026808
[24] Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S and Ueda M 2018 Phys. Rev. X 8 031079
[25] Kawabata K, Higashikawa S, Gong Z, Ashida Y and Ueda M 2019 Nat. Commun. 10 297
[26] Kawabata K, Shiozaki K, Ueda M and Sato M 2019 Phys. Rev. X 9 041015
[27] Leykam D, Bliokh K Y, Huang C, Chong Y D and Nori F 2017 Phys. Rev. Lett. 118 040401
[28] Liu T, Zhang Y R, Ai Q, Gong Z, Kawabata K, Ueda M and Nori F 2019 Phys. Rev. Lett. 122 076801
[29] Yao S and Wang Z 2018 Phys. Rev. Lett. 121 086803
[30] Song F, Yao S and Wang Z 2019 Phys. Rev. Lett. 123 170401
[31] Xiao L, Zhan X, Bian Z H, Wang K K, Zhang X, Wang X P, Li J, Mochizuki K, Kim D, Kawakami N et al. 2017 Nat. Phys. 13 1117
[32] Yao S, Song F and Wang Z 2018 Phys. Rev. Lett. 121 136802
[33] Yokomizo K and Murakami S 2019 Phys. Rev. Lett. 123 066404
[34] Liu J S, Han Y Z and Liu C S 2020 Chin. Phys. B 29 010302
[35] Liu J S, Han Y Z and Liu C S 2019 Chin. Phys. B 28 100304
[36] Joglekar Y N, Marathe R, Durganandini P and Pathak R K 2014 Phys. Rev. A 90 040101
[37] Lee T E and Joglekar Y N 2015 Phys. Rev. A 92 042103
[38] Bagarello F, Lattuca M, Passante R, Rizzuto L and Spagnolo S 2015 Phys. Rev. A 91 042134
[39] Moiseyev N 2011 Phys. Rev. A 83 052125
[40] Gong J and Wang Q H 2015 Phys. Rev. A 91 042135
[41] Gong J and Wang Q H 2019 Phys. Rev. A 99 012107
[42] Xie Q, Rong S and Liu X 2018 Phys. Rev. A 98 052122
[43] Luo X, Yang B, Zhang X, Li L and Yu X 2017 Phys. Rev. A 95 052128
[44] Chitsazi M, Li H, Ellis F M and Kottos T 2017 Phys. Rev. Lett. 119 093901
[45] Li J, Harter A K, Liu J, de Melo L, Joglekar Y N and Luo L 2019 Nat. Commun. 10 855
[46] Jia C Y and Liang Z X 2020 Chin. Phys. Lett. 37 040502
[47] Lee T E, Reiter F and Moiseyev N 2014 Phys. Rev. Lett. 113 250401
[48] Shirley J H 1965 Phys. Rev. 138 B979
[49] Sambe H 1973 Phys. Rev. A 7 2203
[50] Chen C, An J H, Luo H G, Sun C P and Oh C H 2015 Phys. Rev. A 91 052122
[51] Tong Q J, An J H, Gong J, Luo H G and Oh C H 2013 Phys. Rev. B 87 201109
[52] Xiong T S, Gong J and An J H 2016 Phys. Rev. B 93 184306
[1]
. [J]. 中国物理快报, 2020, 37(10): 100301-.
[2]
. [J]. 中国物理快报, 2020, 37(4): 44207-.
[3]
. [J]. 中国物理快报, 2019, 36(5): 50501-.
[4]
. [J]. 中国物理快报, 2014, 31(2): 24202-024202.
[5]
ZHANG Jiao, YUE Chong-Xing. Radiative Dileptonic Decays Bs →l+ l− γ in the TC2 Model [J]. 中国物理快报, 2012, 29(7): 71301-071301.
[6]
ZHANG Feng;GAO Yuan-Ning;HUO Lei. Prospects on Determining Electric Dipole Moments of Σand Ξ Hyperons at BESIII [J]. 中国物理快报, 2010, 27(5): 51101-051101.
[7]
NI Wei-Tou. Probing the Microscopic Origin of Gravity via Precision Polarization and Spin Experiments [J]. 中国物理快报, 2005, 22(1): 33-35.
[8]
PING Rong-Gang;. Searching for Electrical Dipole and Chromodipole Moments of a Charm Quark in J/ψ → γФФ Decay [J]. 中国物理快报, 2004, 21(5): 789-791.
[9]
SHI Zhi-Qiang;NI Guang-Jiong;. Lifetime of Polarized Fermions in Flight [J]. 中国物理快报, 2002, 19(10): 1427-1429.
[10]
GUO Wei;HAN Ru-Shan. Time-Reversal Symmetry Breaking: an Evidence for Spin Pairing
in High-Tc Superconductors [J]. 中国物理快报, 2001, 18(4): 582-583.
[11]
WU Yue-liang. Probing New Physics from CP Violation in Radiative B Decays [J]. 中国物理快报, 1999, 16(5): 339-341.
[12]
GUO Han-ying;ZHAO Wan-yun. Induced Chern-Simons Term at High Temperature in Intrinsic Regularization [J]. 中国物理快报, 1998, 15(5): 321-322.
[13]
XING Zhizhong;DU Dongsheng. Constraints on Violation in the Fourth Generation Effect on CP
Penguin-Dominated b → s Decays
[J]. 中国物理快报, 1992, 9(1): 9-12.