Managing Quantum Heat Transfer in a Nonequilibrium Qubit-Phonon Hybrid System with Coherent Phonon States
Chen Wang1*, Lu-Qin Wang2, and Jie Ren2*
1Department of Physics, Zhejiang Normal University, Jinhua 321004, China 2Center for Phononics and Thermal Energy Science, China-EU Joint Center for Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Sciences and Engineering, Tongji University, Shanghai 200092, China
Abstract:We investigate quantum heat transfer in a nonequilibrium qubit-phonon hybrid open system, dissipated by external bosonic thermal reservoirs. By applying coherent phonon states embedded in the dressed quantum master equation, we are capable of dealing with arbitrary qubit-phonon coupling strength. It is counterintuitively found that the effect of negative differential thermal conductance is absent at strong qubit-phonon hybridization, but becomes profound at weak qubit-phonon coupling regime. The underlying mechanism of decreasing heat flux by increasing the temperature bias relies on the unidirectional transitions from the up-spin displaced coherent phonon states to the down-spin counterparts, which seriously freezes the qubit and prevents the system from completing a thermodynamic cycle. Finally, the effects of perfect thermal rectification and giant heat amplification are unraveled, thanks to the effect of negative differential thermal conductance. These results of the nonequilibrium qubit-phonon open system would have potential implications in smart energy control and functional design of phononic hybrid quantum devices.
(Phonons or vibrational states in low-dimensional structures and nanoscale materials)
引用本文:
. [J]. 中国物理快报, 2021, 38(1): 10501-.
Chen Wang, Lu-Qin Wang, and Jie Ren. Managing Quantum Heat Transfer in a Nonequilibrium Qubit-Phonon Hybrid System with Coherent Phonon States. Chin. Phys. Lett., 2021, 38(1): 10501-.
Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature431 162
[6]
Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Hummer T, Solano E, Marx A and Gross R 2010 Nat. Phys.6 772
[7]
O'Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lennander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis J M and Cleland A N 2010 Nature464 697
Rabl P, Kolkowitz S J, Koppens F H L, Harris J G E, Zoller P and Lukin M D 2010 Nat. Phys.6 602
[14]
Kolkowitz S, Jayich A C B, Unterreithmeier Q P, Bennett S D, Rabi P, Harris J G E and Lukin M D 2012 Science335 1603
[15]
Yeo I, de Assis P L, Gloppe A, Dupont-Ferrier E, Verlot P, Malik N S, Dupuy E, Claudon J, Gerard J M, Auffeves A, Nogues G, Seidelin S, Poizat J P, Arcizet O and Richard M 2014 Nat. Nanotechnol.9 106
[16]
Schuetz M J A, Kessler E M, Giedke G, Vandersypen L M K, Lukin M D and Cirac J I 2015 Phys. Rev. X5 031031
[17]
Bienfait A, Satzinger K J, Zhong Y P, Chang H S, Chou M H, Conner C R, Dumur E, Grebel J, Peairs G A, Povey R G and Cleland A N 2019 Science364 368