Electron Transport Through a Quantum Wire with a Side-Coupled Quantum Dot: Fano Resonance
XIONG Yong-Jian, HE Zhou-Bo
Key Laboratory of Nano Materials of Ningbo and Department of Physics, Ningbo University, Ningbo 315211
Electron Transport Through a Quantum Wire with a Side-Coupled Quantum Dot: Fano Resonance
XIONG Yong-Jian; HE Zhou-Bo
Key Laboratory of Nano Materials of Ningbo and Department of Physics, Ningbo University, Ningbo 315211
关键词 :
73.63.Kv ,
73.23.Hk ,
72.15.Qm
Abstract : The Fano resonance of a quantum wire (QW) with a side-coupled quantum dot (QD) is investigated. The QD has multilevel and is in the Coulomb blockade regime. We show that there are two aspects in contribution to asymmetric Fano dip line shape of conductance: (1) the quantum interference between the resonant level and non-resonant levels, (2) the asymmetric electron occupation of levels in the two sides of a resonant level in the QD. The smearing of the asymmetry of the dip structure with the increasing temperature is partially attributed to fluctuation of electron state in the QD.
Key words :
73.63.Kv
73.23.Hk
72.15.Qm
出版日期: 2004-09-01
:
73.63.Kv
(Quantum dots)
73.23.Hk
(Coulomb blockade; single-electron tunneling)
72.15.Qm
(Scattering mechanisms and Kondo effect)
引用本文:
XIONG Yong-Jian; HE Zhou-Bo. Electron Transport Through a Quantum Wire with a Side-Coupled Quantum Dot: Fano Resonance[J]. 中国物理快报, 2004, 21(9): 1802-1804.
XIONG Yong-Jian, HE Zhou-Bo. Electron Transport Through a Quantum Wire with a Side-Coupled Quantum Dot: Fano Resonance. Chin. Phys. Lett., 2004, 21(9): 1802-1804.
链接本文:
https://cpl.iphy.ac.cn/CN/
或
https://cpl.iphy.ac.cn/CN/Y2004/V21/I9/1802
[1]
LÜRong;LIU Zhi-Rong. Current and Shot Noise in a Quantum Dot Coupled to Ferromagnetic Leads in the Kondo Regime [J]. 中国物理快报, 2007, 24(1): 195-198.
[2]
FANG Tie-Feng;WANG Shun-Jin;. Multiterminal Conductance and Decoherence Effect of a Three-Terminal Kondo Dot [J]. 中国物理快报, 2006, 23(8): 2213-2216.
[3]
CHEN Zuo-Zi;Lü Rong;ZHAI Hui;CHANG Lee. Non-Equilibrium Quantum Transport of Bosons through a Quantum Dot [J]. 中国物理快报, 2006, 23(8): 2008-2011.
[4]
SUN Pu-Nan. Antiresonance Effect in Electronic Tunnelling through a One-Dimensional Quantum Dot Chain [J]. 中国物理快报, 2006, 23(8): 2217-2220.
[5]
HUANG Rui;WU Shao-Quan;YAN Cong-Hua;SUN Wei-Li;YU Wan-Lun. Kondo Effect in a Quantum Dot Coupled to Ferromagnetic Leads and a Mesoscopic Ring [J]. 中国物理快报, 2006, 23(7): 1892-1896.
[6]
YAN Cong-Hua;WU Shao-Quan;HUANG Rui;SUN Wei-Li. Spin-Flip Process through Double Quantum Dots Coupled to Ferromagnetic Leads [J]. 中国物理快报, 2006, 23(7): 1888-1891.
[7]
ZHANG Guang-Biao;WANG Shun-Jin;LI Lei. Shot Noise in a Mesoscopic Interferometer [J]. 中国物理快报, 2006, 23(6): 1570-1573.
[8]
ZHU Rui. A Theoretic Approach to SU(4) Kondo Effect in Carbon Nanotube Quantum Dots [J]. 中国物理快报, 2006, 23(6): 1578-1580.
[9]
Alexander Schnurpfeil;SONG Bo;Martin Albrecht. An ab initio Non-Equilibrium Green Function Approach to Charge Transport: Dithiolethine [J]. 中国物理快报, 2006, 23(3): 689-692.
[10]
XIONG Yong-Jian. Aharonov--Bohm Oscillations and Fano Resonance of a Coupled Dot-Ring System [J]. 中国物理快报, 2006, 23(3): 705-707.
[11]
CHEN Xiong-Wen;SHI Zhen-Gang;WU Shao-Quan;SONG Ke-Hui;. Tunable Kondo Effect of a Three-Terminal Transport Quantum Dot Embedded in an Aharonov--Bohm Ring [J]. 中国物理快报, 2006, 23(2): 439-442.
[12]
CHEN Yu-Guang;CHEN Hong;ZHANG Yu-Mei. Ground State Properties of a Local Sine-Gordon Model with Two Scatters [J]. 中国物理快报, 2005, 22(6): 1496-1499.
[13]
WU Liang-Cai;CHEN Kun-Ji;YU Lin-Wei;DAI Min;MA Zhong-Yuan;HAN Pei-Gao;LI Wei;HUANG Xin-Fan. Electronic Properties of Nanocrystalline-Si Embedded in Asymmetric Ultrathin SiO2 by In-Situ Fabrication Technique [J]. 中国物理快报, 2005, 22(3): 733-736.
[14]
ZHOU Bo;CHEN Xiong-Wen; LI Tie; NIE Yu-Mei;WU Shao-Quan. Persistent Current in a Mesoscopic Ring Side-Attached with a Quantum Dot [J]. 中国物理快报, 2005, 22(11): 2918-2921.
[15]
CHEN Xiong-Wen;WU Shao-Quan;WANG Peng;SUN Wei-Li. Giant Persistent Current in a Mesoscopic Ring with Parallel-Coupled Double Quantum Dots [J]. 中国物理快报, 2004, 21(5): 911-914.