Darboux Transformation and Exact Solutions of the Myrzakulov-I Equation
CHEN Chi, ZHOU Zi-Xiang
School of Mathematical Sciences, Fudan University, Shanghai 200433Key Laboratory of Mathematics for Nonlinear Sciences of Ministry of Education, Fudan University, Shanghai 200433
Darboux Transformation and Exact Solutions of the Myrzakulov-I Equation
CHEN Chi, ZHOU Zi-Xiang
School of Mathematical Sciences, Fudan University, Shanghai 200433Key Laboratory of Mathematics for Nonlinear Sciences of Ministry of Education, Fudan University, Shanghai 200433
摘要The Myrzakulov-I equation is a 2+1-dimensional generalization of the Heisenberg ferromagnetic equation and has a non-isospectral Lax pair. The Darboux transformation with non-constant spectral parameter is constructed and an extra constraint on the spectral parameter for the existence of the Darboux transformation is derived. Explicit expressions of the solutions of the Myrzakulov-I equation are presented.
Abstract:The Myrzakulov-I equation is a 2+1-dimensional generalization of the Heisenberg ferromagnetic equation and has a non-isospectral Lax pair. The Darboux transformation with non-constant spectral parameter is constructed and an extra constraint on the spectral parameter for the existence of the Darboux transformation is derived. Explicit expressions of the solutions of the Myrzakulov-I equation are presented.
[1] Myrzakulov R, Nugmanova G N and Syzdykova R N 1998 J.Phys. A: Math. Gen. 31 9535 [2] Zhang Z H, Deng M, Zhao W Z and Wu K 2006 J. Phys.Soc. Jpn. 75 104002 [3] Myrzakulov R, Vijayalakshmi S, Nugmanova G N andLakshmanan M 1997 Phys. Lett. A 233 391 [4] Martina L, Myrzakul Kur, Myrzakulov R and Soliani G 2001 J. Math. Phys. 42 1397 [5] Gu C H and Zhou Z X 1987 Lett. Math. Phys. 13179 [6] Cie\'sli\'nski J 1995 J. Math. Phys. 36 5670 [7] Ma W X 1997 Lett. Math. Phys. 39 33 [8] Gu C H, Hu H S and Zhou Z X 2006 DarbouxTransformations in Integrable Systems (Dordrecht: Springer) [9] Zhao S L, Zhang D J and Chen D Y 2009 Chin. Phys.Lett. 26 030202