Control of a Unified Chaotic System via Single Variable Feedback
GUO Rong-Wei1, U. E. Vincent2,3
1Department of Mathematical and Physical Sciences, Shandong Institute of Light Industry, Jinan 2503532Institute of Theoretical Physics, Technical University of Clausthal, Arnold-Sommer Str. 6, 38678 Clausthal-Zellerfeld, Germany3Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
Control of a Unified Chaotic System via Single Variable Feedback
GUO Rong-Wei1, U. E. Vincent2,3
1Department of Mathematical and Physical Sciences, Shandong Institute of Light Industry, Jinan 2503532Institute of Theoretical Physics, Technical University of Clausthal, Arnold-Sommer Str. 6, 38678 Clausthal-Zellerfeld, Germany3Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
摘要Based on the LaSalle invariance principle, we propose a simple adaptive-feedback for controlling the unified chaotic system. We show explicitly with numerical proofs that our method can easily achieve the control of chaos in the unified chaotic system using only a single variable feedback. The present controller, to our knowledge, is the simplest control scheme for controlling a unified chaotic system.
Abstract:Based on the LaSalle invariance principle, we propose a simple adaptive-feedback for controlling the unified chaotic system. We show explicitly with numerical proofs that our method can easily achieve the control of chaos in the unified chaotic system using only a single variable feedback. The present controller, to our knowledge, is the simplest control scheme for controlling a unified chaotic system.
GUO Rong-Wei;U. E. Vincent;. Control of a Unified Chaotic System via Single Variable Feedback[J]. 中国物理快报, 2009, 26(9): 90506-090506.
GUO Rong-Wei, U. E. Vincent,. Control of a Unified Chaotic System via Single Variable Feedback. Chin. Phys. Lett., 2009, 26(9): 90506-090506.
[1] Ott E, Grebogi C and Yorke J A 1990 Phys. Rev. Lett. 64 1196 [2] Boccaletti S, Grebogi C, Lai Y C, Mancini H and Maza D2000 Phys. Reports 329 103 [3] Yang L, Liu Z and Mao J M 2000 Phys. Rev. Lett. 84 67 [4] Huang D 2004 Phys. Rev. Lett. 93 214101 [5] Singer J, Wang Y Z and Bau H H 1991 Phys. Rev. Lett. 66 1123 [6] Auerbach D, Grebogi C, Ott E and Yorke J A 1992 Phys.Rev. Lett. 69 3479 [7] Corron N J, Pethel S D and Hopper B A 2000 Phys. Rev.Lett. 84 3835 [8] Pyragas K 1992 Phys. Lett. A 170 421 [9] Li W L, Chen X Q and Shen Z P 2008 Chin. Phys. B 17 88 [10] Yang T 2001 Impulsive Systems and Control: Theoryand Applications (New York: Nova Science) [11] Chen D, Sun J and Huang C 2006 Chaos, SolitonsFractals 28 213 [12] Chen B, Liu X and Tong S 2007 Chaos, SolitonsFractals 34 1180 [13] Vincent U E, Njah A N and Laoye J A 2007 Physica D 231 130 [14] Lorenz E N 1963 J. Atmos. Sci 20 130 [15] Chen G and Ueta T 1999 Int. J. Bifur. Chaos 91465 [16] L\"u J and Chen G 2002 Int. J. Bifur. Chaos 12 659 [17] L\"u J, Chen G, Cheng D and \v{Celikovsk\'{y S 2002 Int. J. Bifur. Chaos 12 2917 [18] L\"{u J, Wu X and L\"u J 2002 Phys. Lett. A 305 365 [19] Lu J A, Tao C H, L\"u J H and Liu M 2002 Chin. Phys.Lett. 19 632 [20] Wang H, Han Z, Zhang W and Xie Q 2008 J. SoundVibration 320 365 [21] Guo R W 2008 Phys. Lett. A 372 5593 [22] Guo R, Vincent U E and Idowu B A 2009 PhysicaScripta 79 035801 [23] Vincent U E and Guo R 2009 Commun. Nonlear. Sci.Numer. Simulat. 14 3925