1Ecole Nationale Supérieure Polytechnique, University of Yaounde I, PO Box 8390, Cameroon2Department of Physics, Faculty of Science, University of Yaounde I, PO Box. 812, Cameroon3Higher Teacher's Training College of Maroua, University of Maroua, P.O. Box. 46, Cameroon4The Abdus Salam International Centre for Theoretical Physics, P.O. Box 586, Strada Costiera, II-34014, Trieste, Italy
Miscellaneous Rotating Solitary Waves to a Coupled Dispersionless System
1Ecole Nationale Supérieure Polytechnique, University of Yaounde I, PO Box 8390, Cameroon2Department of Physics, Faculty of Science, University of Yaounde I, PO Box. 812, Cameroon3Higher Teacher's Training College of Maroua, University of Maroua, P.O. Box. 46, Cameroon4The Abdus Salam International Centre for Theoretical Physics, P.O. Box 586, Strada Costiera, II-34014, Trieste, Italy
摘要We investigate the soliton structure of a coupled dispersionless system describing a current-conducting string with infinite length within a magnetic field. Thus, following Hirota's method, we unwrap three typical localized waves with nonzero angular momentum depending strongly upon their angular velocities. Illustrating the soliton behavior of these waves, we focus our interests on breather-like waves and depict the elastic scattering amongst such waves.
Abstract:We investigate the soliton structure of a coupled dispersionless system describing a current-conducting string with infinite length within a magnetic field. Thus, following Hirota's method, we unwrap three typical localized waves with nonzero angular momentum depending strongly upon their angular velocities. Illustrating the soliton behavior of these waves, we focus our interests on breather-like waves and depict the elastic scattering amongst such waves.
[1]Konno K and Kakuhata H 1996 J. Phys. Soc. Jpn. 65 340 [2] Kakuhata H and Konno K 1997 J. Phys. A: Math. Gen. 30 L401 [3] Kakuhata H and Konno K 2002 Theor. Math. Phys. 133 1675 [4] Gambo B, Kuetche K V, Bouetou B T and Kofane T C 2009 Chin. Phys. Lett. 26 060503 [5] Hirota R 1988 Direct Methods in Soliton Theory(Berlin: Springer) [6] Kuetche K V, Bouetou B T and Kofane T C 2007 J. Phys. Soc. Jpn. 76 126001 [7] Kakuhata H and Konno K 2002 Theor. Math. Phys. 133 1675 [8] Kuetche K V, Bouetou B T and Kofane T C 2008 Chin.Phys. Lett. 25 1972 [9] Kuetche K V, Bouetou B T and Kofane T C 2008 Chin.Phys. Lett. 25 425 [10] Bouetou B T, Kuetche K V and Kofane T C 2008 Chin.Phys. Lett. 25 3173 [11] Konno K and Kakuhata H 1996 J. Phys. Soc. Jpn. 65 340 [12] Kakuhata H and Konno K 1997 J. Phys. A: Math. Gen. 30 L401 [13] Alagesan T and Porsezian K 1997 Chaos SolitonsFractals 8 1645 [14] Kuetche K V, Gambo B, Bouetou B T and Kofane T C 2009 Chin. Phys. Lett. 26 030506 [15] Drazin P G and Johnson R S 1989 Solitons: anIntroduction (Cambridge: Cambridge Univ. Press) [16] Ablowitz M J and Clarkson P A 1991 Solitons,Nonlinear Evolution Equations and Inverse Scattering (Cambridge:Cambridge University) [17] Kuetche K V, Bouetou B T and Kofane T C 2009 SolitonStructures in Barothropic Relaxing Media in Handbook of Solitons:Research, Technology and Applications (New York: Nova Science) [18] Matveev V B and Salle M A 1991 Darboux Transformationsand Solitons (Berlin: Springer) [19] Boyd R W 1992 Nonlinear Optics (Boston: Academic) [20] Kuetche K V, Bouetou B T and Kofane T C 2007 J. Phys.Soc. Jpn. 76 073001