Slow Light Effect and Multimode Lasing in a Photonic Crystal Waveguide Microlaser
XING Ming-Xin1, ZHENG Wan-Hua1,2, ZHOU Wen-Jun1, CHEN Wei1, LIU An-Jin1, WANG Hai-Ling1
1Nano-optoelectronics Lab, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 1000832State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
Slow Light Effect and Multimode Lasing in a Photonic Crystal Waveguide Microlaser
XING Ming-Xin1, ZHENG Wan-Hua1,2, ZHOU Wen-Jun1, CHEN Wei1, LIU An-Jin1, WANG Hai-Ling1
1Nano-optoelectronics Lab, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 1000832State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
摘要The slow light effect in a photonic crystal waveguide is investigated theoretically and experimentally. Theoretical calculation indicates that there is a slow light region for the even mode, from which the resonance and lasing in a microcavity would benefit. A photonic crystal waveguide microlaser is fabricated, which is related to the group velocity of c/120.6.
Abstract:The slow light effect in a photonic crystal waveguide is investigated theoretically and experimentally. Theoretical calculation indicates that there is a slow light region for the even mode, from which the resonance and lasing in a microcavity would benefit. A photonic crystal waveguide microlaser is fabricated, which is related to the group velocity of c/120.6.
[1] Yanik M F and Fan S H 2004 Phys. Rev. Lett. 92 083901 [2] Vlasov Y A, O'Boyle M, Hamann H F and McNab S J 2005 Nature 65 438 [3] Baba T 2008 Nature Photon. 2 465 [4] Baba T 2007 Nature Photon. 1 11 [5] Chiao R Y and Milonni P W 2002 Opt. Photon. News 13 27 [6] Zhang C, Huang Y, Mao X Y, Cui K Y, Huang Y D, Zhang W, Peng J D 2009 Chin. Phys. Lett. 26 074216 [7] Mao X Y, Zhang G Y, Huang Y D, Zhang W, Peng J D 2008 Chin. Phys. Lett. 25 4311 [8] Painter O Lee R K, Scherer A, Yariv A, O'Brien J D, Dapkus P D, Kim I 1999 Science 284 1819 [9] Zheng W H, Ren G, Xing M X, Chen W, Liu A J, Zhou W J, Baba T, Nozaki K and Chen L H 2008 Appl. Phys. Lett. 93 081109 [10] Liu Y Z, Feng S, Tian J, Ren C, Tao H H, Li Z Y, Cheng B Y, Zhang D Z and Luo Q 2007 J. Appl. Phys. 102 043102 [11]Ma X T, Zheng W H, Ren G, Chen L H 2006 Chin. Phys. Lett. 23 2759 [12]Ren G, Zheng W H, Zhang Y J, Xing M X, Wang K, Du X Y, Chen L H 2008 Chin. Phys. Lett. 25 981 [13]Chen W, Xing M X, Zhou W J, Liu A J, Zheng W H 2009 Chin. Phys. Lett. 26 084210 [14]Ding W Q, Tang D H, Chen L X, Zhao Y, Liu Y 2007 Chin. Phys. Lett. 24 127 [15]Notomi M, Yamada K, Shinya A, Takahashi J, Takahashi C and Yokohama I 2001 Phys. Rev. Lett. 87 17 [16]Asano T, Kiyota K, Kumaoto D, Song B S and Noda S 2004 Appl. Phys. Lett. 84 4690 [17] Gersen H, Karle T J, Engelen R J P, Bogaerts W, Korterik J P, Hulst N F, Krauss T F and Kuipers L 2005 Phys. Rev. Lett. 94 073903 [18] Du X Y, Zheng W H, Ren G, Wang K, Xing M X, Chen L H 2008 Acta Phys. Sin. 55 571 (in Chinese) [19] Du X Y, Zheng W H, Zhang Y J, Ren G, Wang K, Xing M X, Chen L H 2008 Acta Phys. Sin. 57 7005 (in Chinese) [20] Kiyata K, Kiss T, Yokouchi N, Ide T and Baba T 2006 Appl. Phys. Lett. 88 201904 [21] Johnson S G, Villeneuve P R, Fan S H and Joannopoulos J D 2000 Phys. Rev. Lett. 62 8212 [22] Wang H L, Xing M X, Ren G and Zheng W H 2009 J. Vac. Sci. Technol. B 27 1093 [23] Cao J R, Lee P T, Choi S J, Shafiiha R, Choi S J, O'Brien J D and Dapkus P D 2002 J. Vac. Sci. Technol. B 20 618