Abstract:The local surface plasmon resonances (LSPRs) of dielectric-Ag core-shell nanospheres are studied by the discrete-dipole approximation method. The result shows that LSPRs are sensitive to the surrounding medium refractive index, which shows a clear red-shift with the increasing surrounding medium refractive index. A dielectric-Ag core-shell nanosphere exhibits a strong coupling between the core and shell plasmon resonance modes. LSPRs depend on the shell thickness and the composition of dielectric-core and metal-shell. LSPRs can be tuned over a longer wavelength range by changing the ratio of core to shell value. The lower energy mode ω? shows a red-shift with the increasing dielectric-core value and the inner core radius, while blue-shifted with the increasing outer shell thickness. The underlying mechanisms are analyzed with the plasmon hybridization theory and the phase retardation effect.
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
引用本文:
. [J]. 中国物理快报, 2015, 32(09): 94202-094202.
MA Ye-Wan, WU Zhao-Wang, ZHANG Li-Hua, LIU Wan-Fang, ZHANG Jie. Theoretical Study of Local Surface Plasmon Resonances on a Dielectric-Ag Core-Shell Nanosphere Using the Discrete-Dipole Approximation Method. Chin. Phys. Lett., 2015, 32(09): 94202-094202.
[1] Warnes W L, Dereux A and Bobesen T W 2003 Nature424 824 [2] Nie S and Enmory S R 1997 Science275 1102 [3] Murray W A and Barnes W L 2007 Adv. Mater.19 3771 [4] Maier S A 2007 Plasmonics: Fundamentals Application (New York: Springer) p 382 [5] Novotny L and Hecht B 2006 Principle Nano-Opt. (Cambridge: Cambridge University Press) p 66 [6] Ji Y, Yun B F, Hu G H and Cui Y P 2009 Chin. Phys. Lett.26 014205 [7] Kelly K L, Coronado E, Zhao L L and Schatz G C 2003 J. Phys. Chem. B 107 668 [8] Zhang X F and Yan B 2013 Acta Phys. Sin.62 03805 (in Chinese) [9] Ma Y W, Wu Zh W, Zhang L H, Zhang J, Jian G S and Pan S 2013 Plasmonics8 1351 [10] Ma Y W, Wu Zh W, Zhang L H and Zhang J 2010 Chin. Phys. Lett.27 064204 [11] Aubry A, Lei D Y, Maier S A and Pendry J B 2010 Phys. Rev. Lett.105 233901 [12] Gresho P M and Sani R L 2010 Incompressible Flow Finite Element Method. (New York: Wiley) p 1 [13] Taflove A 2000 Comput. ElectroDyn.: Finite Difference Time Domain Method. (Norwood MA: Artech House) p 1 [14] Draine B T and Flatau P J 1994 J. Opt. Soc. Am. A 11 1491 [15] Draine B T and Flatau P J 2012 arXiv:1202.3424 [physics.comp-ph] [16] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370 [17] Kreibig U and Vollmer M 1995 Opt. Properties Met. Clusters (Berlin: Springer) p 100 [18] Prodan E, Radbloff C, Halas N J and Nordander P 2003 Science302 419 [19] Prodan E and Nordander P 2004 J. Chem. Phys.120 5444 [20] Pea-Rodríguez O, Pal U, Rodríguez-Iglesias V, Rodríguez-Fernadez L and Oliver A 2011 J. Opt. Soc. Am. B 28 714