Phase Transition Behavior of LiCr 0.35 Mn0.65O2 under High Pressure by Electrical Conductivity Measurement
CUI Xiao-Yan1,2, HU Ting-Jing1, HAN Yong-Hao1, GAO Chun-Xiao1, PENG Gang1, LIU Cai-Long1, WU Bao-Jia1, WANG Yue1, LIU Bao1, REN Wan-Bin1, LI Yan1, SU Ning-Ning1, ZOU Guang-Tian1, DU Fei3, CHEN Gang3
1State Key Laboratory for Superhard Materials, Jilin University, Changchun 130012 2College of Physics, Jilin Normal University, Siping 136000 3College of Physics, Jilin University, Changchun 130012
Phase Transition Behavior of LiCr 0.35 Mn0.65O2 under High Pressure by Electrical Conductivity Measurement
CUI Xiao-Yan1,2, HU Ting-Jing1, HAN Yong-Hao1, GAO Chun-Xiao1, PENG Gang1, LIU Cai-Long1, WU Bao-Jia1, WANG Yue1, LIU Bao1, REN Wan-Bin1, LI Yan1, SU Ning-Ning1, ZOU Guang-Tian1, DU Fei3, CHEN Gang3
1State Key Laboratory for Superhard Materials, Jilin University, Changchun 130012 2College of Physics, Jilin Normal University, Siping 136000 3College of Physics, Jilin University, Changchun 130012
摘要The electrical conductivity of powdered LiCr 0.35 Mn0.65O2 is measured under high pressure up to 26.22 GPa in the temperature range 300-413 K by using a diamond anvil cell. It is found that both conductivity and activation enthalpy change discontinuously at 5.36 GPa and 21.66 GPa. In the pressure range 1.10-5.36 GPa, pressure increases the activation enthalpy and reduces the carrier scattering, which finally leads to the conductivity increase. In the pressure ranges 6.32-21.66 GPa and 22.60-26.22 GPa, the activation enthalpy decreases with pressure increasing, which has a positive contribution to electrical conductivity increase. Two pressure-induced structural phase transitions are found by in-situ x-ray diffraction under high pressure, which results in the discontinuous changes of conductivity and activation enthalpy.
Abstract:The electrical conductivity of powdered LiCr 0.35 Mn0.65O2 is measured under high pressure up to 26.22 GPa in the temperature range 300-413 K by using a diamond anvil cell. It is found that both conductivity and activation enthalpy change discontinuously at 5.36 GPa and 21.66 GPa. In the pressure range 1.10-5.36 GPa, pressure increases the activation enthalpy and reduces the carrier scattering, which finally leads to the conductivity increase. In the pressure ranges 6.32-21.66 GPa and 22.60-26.22 GPa, the activation enthalpy decreases with pressure increasing, which has a positive contribution to electrical conductivity increase. Two pressure-induced structural phase transitions are found by in-situ x-ray diffraction under high pressure, which results in the discontinuous changes of conductivity and activation enthalpy.
CUI Xiao-Yan;HU Ting-Jing;HAN Yong-Hao;GAO Chun-Xiao;PENG Gang;LIU Cai-Long;WU Bao-Jia;WANG Yue;LIU Bao;REN Wan-Bin;LI Yan;SU Ning-Ning;ZOU Guang-Tian;DU Fei;CHEN Gang. Phase Transition Behavior of LiCr 0.35 Mn0.65O2 under High Pressure by Electrical Conductivity Measurement[J]. 中国物理快报, 2010, 27(3): 36402-036402.
CUI Xiao-Yan, HU Ting-Jing, HAN Yong-Hao, GAO Chun-Xiao, PENG Gang, LIU Cai-Long, WU Bao-Jia, WANG Yue, LIU Bao, REN Wan-Bin, LI Yan, SU Ning-Ning, ZOU Guang-Tian, DU Fei, CHEN Gang. Phase Transition Behavior of LiCr 0.35 Mn0.65O2 under High Pressure by Electrical Conductivity Measurement. Chin. Phys. Lett., 2010, 27(3): 36402-036402.
[1] Johnston W D, Heikes R R and Sestrich D 1958 J. Phys. Chem. Solids 7 1 [2] Goodenough J B, Wickham D G and Croft W J 1958 J. Phys. Chem. Solids 5 107 [3] Armstrong A R and Bruce P G 1996 Nature 381 499 [4] Dittrich G et al 1969 Z. Anorg. Allg. Chem. 365 337 [5] Capitaine F, Gravereau P and Delmas C 1996 Solid State Ionics 89 197 [6] Gummow R J, Liles D C and Thackeray M M 1993 Mater. Res. Bull. 28 1249 [7] Ceder G, Mishra S K 1999 Electrochem. Solid-State Lett. 2 550 [8] Hwang S J et al 2000 Chem. Mater. 12 1818 [9] MacNeil D D, Lu Z and Dahn J R 2002 J. Electrochem. Soc. 149 A1332 [10] Ohzuku T and Makimura Y 2001 Chem. Lett. 30 744 [11] Myung S T et al 2003 J. Electrochem. Soc. 150 A1560 [12] Gopukumar S et al 2004 Electrochim. Acta 49 803 [13] Venkatraman S et al 2003 Chem. Mater. 15 5003 [14] Akimoto J et al 2003 Chem. Mater. 15 2984 [15] Wei Y et al 2006 Electrochim. Acta 51 3365 [16] Alc\'{antara R et al 2004 J. Electroanalyt. Chem. 566 187 [17] Han Y H et al 2005 Chin. Phys. Lett. 22 1347 [18] Li M et al 2007 Chin. Phys. Lett. 24 54 [19] He C Y et al 2007 Chin. Phys. Lett. 24 1070 [20] Yu C L et al 2007 Chin. Phys. Lett. 24 2204 [21] Du F et al 2007 J. Appl. Phys. 102 113906 [22] Coustier F et al 1999 J. Electrochem. Soc. 146 1355 [23] Kano S and Sato M 1995 Solid State Ionics 79 215