Pressure Effects on the Charge Carrier Transportation of BaF$_{2}$ Nanocrystals
Xiao-Yan Cui1 , Ting-Jing Hu1** , Jing-Shu Wang1 , Jun-Kai Zhang1 , Xue-Fei Li1 , Jing-Hai Yang1 , Chun-Xiao Gao2**
1 Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping 1360002 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012
Abstract :The charge transport behavior of barium fluoride nanocrystals is investigated by in situ impedance measurement up to 35 GPa. It is found that the parameters change discontinuously at about 6.9 GPa, corresponding to the phase transition of BaF$_{2}$ nanocrystals under high pressure. The charge carriers in BaF$_{2}$ nanocrystals include both F$^{-}$ ions and electrons. Pressure makes the electronic transport more difficult. The defects at grains dominate the electronic transport process. Pressure could make the charge–discharge processes in the $Fm3m$ phase more difficult.
收稿日期: 2016-12-27
出版日期: 2017-03-21
:
64.60.-i
(General studies of phase transitions)
72.20.-i
(Conductivity phenomena in semiconductors and insulators)
07.35.+k
(High-pressure apparatus; shock tubes; diamond anvil cells)
引用本文:
. [J]. 中国物理快报, 2017, 34(4): 46401-046401.
Xiao-Yan Cui, Ting-Jing Hu, Jing-Shu Wang, Jun-Kai Zhang, Xue-Fei Li, Jing-Hai Yang, Chun-Xiao Gao. Pressure Effects on the Charge Carrier Transportation of BaF$_{2}$ Nanocrystals. Chin. Phys. Lett., 2017, 34(4): 46401-046401.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/34/4/046401
或
https://cpl.iphy.ac.cn/CN/Y2017/V34/I4/46401
[1] Moser A, Takano K, Margulies D T et al 2002 J. Phys. D 35 R157 [2] Ambashta R D, Yusuf S M, Mukadam M D et al 2005 J. Magn. Magn. Mater. 293 8 [3] Rudge S R, Kurtz T L, Vessely C R et al 2000 Biomaterials 21 1411 [4] Hilgenkamp H and Mannhart J 2002 Rev. Mod. Phys. 74 485 [5] Lin Y, Zhang Z, Tang Z et al 1999 Adv. Mater. Opt. Electron. 9 205 [6] Waser R and Hagenbeck R 2000 Acta Mater. 48 797 [7] Yang X C, Hao A M, Wang X M et al 2010 Comput. Mater. Sci. 49 530 [8] Jiang H T, Pandey R, Darrigan C et al 2003 J. Phys.: Condens. Matter 15 709 [9] Dorfman S M, Jiang F, Mao Z et al 2010 Phys. Rev. B 81 174121 [10] Kanchana V, Vaitheeswaran G and Rajagopalan M 2003 J. Alloys Compd. 359 66 [11] Smith J S, Desgreniers S, Tse J S et al 1950 Phys. Rev. B 79 897 [12] Leger J M, Haines J, Atouf A et al 1995 Phys. Rev. B 52 13247 [13] Hu T J, Cui X Y, Gao Y et al 2010 Rev. Sci. Instrum. 81 115101 [14] Cui X Y, Hu T J, Han Y H et al 2010 Chin. Phys. Lett. 27 036402 [15] Hu T J, Cui X Y, Li X F et al 2015 Chin. Phys. Lett. 32 016402 [16] Hu T J, Cui X Y, Li X F et al 2015 Chin. Phys. B 24 116401 [17] Wang J S, Cui Q L, Hu T J et al 2016 J. Phys. Chem. C 120 12249
[1]
. [J]. 中国物理快报, 2022, 39(9): 96201-.
[2]
. [J]. 中国物理快报, 2022, 39(7): 73101-.
[3]
. [J]. 中国物理快报, 2021, 38(8): 81201-.
[4]
. [J]. 中国物理快报, 2020, 37(10): 106201-.
[5]
. [J]. 中国物理快报, 0, (): 66201-.
[6]
. [J]. 中国物理快报, 2020, 37(6): 66201-.
[7]
. [J]. 中国物理快报, 2019, 36(8): 86401-086401.
[8]
. [J]. 中国物理快报, 2018, 35(1): 16401-.
[9]
. [J]. 中国物理快报, 2017, 34(6): 67501-.
[10]
. [J]. 中国物理快报, 2016, 33(09): 97401-097401.
[11]
. [J]. 中国物理快报, 2015, 32(01): 16402-016402.
[12]
. [J]. 中国物理快报, 2014, 31(04): 46103-046103.
[13]
. [J]. Chin. Phys. Lett., 2013, 30(3): 36202-036202.
[14]
. [J]. 中国物理快报, 2012, 29(10): 106101-106101.
[15]
. [J]. 中国物理快报, 2012, 29(8): 86201-086201.