Magic Wavelength of an Optical Clock Transition of Barium
YU Geng-Hua1,2,3, ZHONG Jia-Qi1,2,3, LI Run-Bing1,2, WANG Jin1,2, ZHAN Ming-Sheng1,2**
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 2 Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071 3 Graduate University, Chinese Academy of Sciences, Beijing 100049
Magic Wavelength of an Optical Clock Transition of Barium
YU Geng-Hua1,2,3, ZHONG Jia-Qi1,2,3, LI Run-Bing1,2, WANG Jin1,2, ZHAN Ming-Sheng1,2**
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 2 Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071 3 Graduate University, Chinese Academy of Sciences, Beijing 100049
摘要Similar to most of the other alkaline earth elements, barium atoms can be candidates for optical clocks, thus the magic wavelength for an optical lattice is important for the clock transition. We calculate the magic wavelength of a possible clock transition between 6s21S0 and 6s5d3D2 states of barium atoms. Our theoretical result shows that there are three magic wavelengths 615.9 nm, 641.2 nm and 678.8 nm for a linearly polarized optical lattice laser for barium.
Abstract:Similar to most of the other alkaline earth elements, barium atoms can be candidates for optical clocks, thus the magic wavelength for an optical lattice is important for the clock transition. We calculate the magic wavelength of a possible clock transition between 6s21S0 and 6s5d3D2 states of barium atoms. Our theoretical result shows that there are three magic wavelengths 615.9 nm, 641.2 nm and 678.8 nm for a linearly polarized optical lattice laser for barium.
[1] Hong F L, Takamoto M, Higashi R, Fukuyama Y, Jiang J and Katori H 2005 Opt. Express 13 5253
[2] Ido T, Loftus T H, Boyd M M, Ludlow A D , Holman K W, and Ye J 2005 Phys. Rev. Lett. 94 153001
[3] Marion H, Pereira D S F, Abgrall M, Zhang S, Sortais Y, Bize S, Maksimovic I, Calonico D, Grünert J, Mandache C, Lemonde P, Santarelli G, Laurent Ph and Clairon A 2003 Phys. Rev. Lett. 90 150801
[4] Bauch A 2003 Meas. Sci. Technol. 14 1159
[5] Friebe J, Pape A, Riedmann M, Moldenhauer K, Mehlstaubler T, Rehbein N, Lisdat C, Rasel E M, Ertmer W, Schnatz H , Lipphardt B and Grosche G 2008 Phys. Rev. A 78 033830
[6] Zhou X J, Chen X Z, Chen J B, Wang Y Q and Li J M 2009 Chin. Phys. Lett. 26 090601
[7] Katori H, Ido T and Kuwata-Gonokami M 1999 J. Phys. Soc. Jpn. 68 2479
[8] Katori H, Takamoto M, Pal'chikov V G and Ovsiannikov V D 2003 Phys. Rev. Lett. 91 173005
[9] Takamoto M, Hong F L, Higashi R and Katori H 2005 Nature 435 321
[10] Barber Z W, Hoyt C W, Oates C W, Hollberg L, Taichenachev A V and Yudin V I 2006 Phys. Rev. Lett. 96 083002
[11] Le Targat R, Baillard X, Fouche' M, Brusch A, Tcherbakoff O, Rovera G D and Lemonde P 2006 Phys. Rev. Lett. 97 130801
[12] Lodewyck J, Westergaard P G and Lemonde P 2009 Phys. Rev. A 79 061401
[13] Lisdat Ch, Vellore Winfred J S R, Middelmann T, Riehle F and Sterr U 2009 Phys. Rev. Lett. 103 090801
[14] Dzuba V A and Ginges J S M 2006 Phys. Rev. A 73 032503
[15] De S, Dammalapati U, Jungmann K and Willmann L 2009 Phys. Rev. A 79 041402
[16] Degenhardt C, Stoehr H, Sterr U, Riehle F and Lisdat C 2004 Phys. Rev. A 70 023414
[17] Grimm R, Weidemuller M and Ovchinnikov Y B 2000 Adv. At. Mol. Opt. Phys. 42 95
[18] Zhou X J, Xu X, Chen X Z and Chen J B 2010 Phys. Rev. A 81 012115
[19] Zheng Y N, Zhou X J, Chen J B and Chen X Z 2006 Chin. Phys. Lett. 23 1687
[20] Ralchenko Y, Kramida A E, Reader J and NIST ASD Team (2010). NIST Atomic Spectra Database (ver. 4.0.1) (Gaithersburg, MD: National Institute of Standards and Technology) http://physics.nist.gov/asd
[21] Klose J Z, Fuhr J R and Wiese W L 2002 J. Phys. Chem. Ref. Data 31 217
[22] Kułaga D, Migdałek J and Bar O 2001 J. Phys. B: At. Mol. Opt. Phys. 34 4775
[23] Brust J and Gallagher A C 1995 Phys. Rev. A 52 2120