Experimental Determination of the Landé $g$-Factors for 5$s^{2}$$^{1}\!S$ and $5s5p$$^{3}\!P$ States of the $^{87}$Sr Atom
Ben-quan Lu1,2,3, Yebing Wang1,2, Yang Guo1,2, Qinfang Xu1, Mojuan Yin1, Jiguang Li3, Hong Chang1,2**
1National Time Service Center, Xi'an 710000 2University of Chinese Academy of Sciences, Beijing 100049 3Institute of Applied Physics and Computational Mathematics, Beijing 100088
Abstract:We present an experimental determination on the Landé $g$-factors for the 5$s^{2}$ $^{1}\!S_{0}$ and $5s5p$ $^{3}\!P_{0}$ states in ultra-cold atomic systems, which is important for evaluating the Zeeman shift of the clock transition in the $^{87}$Sr optical lattice clock. The Zeeman shift of the $5s5p$ $^{3}\!P_{0}$–5$s^{2}$ $^{1}\!S_{0}$ forbidden transition is measured with the $\pi$-polarized and $\sigma^{\pm}$-polarized interrogations at different magnetic field strengths. Moreover, in the $g$-factor measurement with the $\sigma^{\pm}$-transition spectra, it is unnecessary to calibrate the external magnetic field. By this means, the ground state 5$s^{2}$ $^{1}\!S_{0}$ $g$-factor for the $^{87}$Sr atom is $-1.306(52)\times10^{-4}$, which is the first experimental determination to the best of our knowledge, and the result matches very well with the theoretical estimation. The differential $g$-factor $\delta g$ between the $5s5p$ $^{3}\!P_{0}$ state and the 5$s^{2}$ $^{1}\!S_{0}$ state of the $^{87}$Sr atoms is measured in the experiment as well, which are $-7.67(36)\times10^{-5}$ with $\pi$-transition spectra and $-7.72(43)\times10^{-5}$ with $\sigma^{\pm}$-transition spectra, in good agreement with the previous report [Phys. Rev. A 76 (2007) 022510]. This work can also be used for determining the differential $g$-factor of the clock states for the optical clocks based on other atoms.
. [J]. 中国物理快报, 2018, 35(4): 43203-.
Ben-quan Lu, Yebing Wang, Yang Guo, Qinfang Xu, Mojuan Yin, Jiguang Li, Hong Chang. Experimental Determination of the Landé $g$-Factors for 5$s^{2}$$^{1}\!S$ and $5s5p$$^{3}\!P$ States of the $^{87}$Sr Atom. Chin. Phys. Lett., 2018, 35(4): 43203-.
Turyshev S G 2009 From Quantum to Cosmos: Fundamental Physics Research in Space (Singapore: World Scientific) chap 3 p 57
[7]
Rosenb, T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Winel, D J and Bergquist J C 2008 Science319 1808
Cairncross W B, Gresh D N, Grau M, Cossel K C, Roussy T S, Ni Y, Zhou Y, Ye J and Cornell E A 2017 Phys. Rev. Lett.119 153001
[10]
Major F G 2007 The Quantum Beat: Principles And Applications Of Atomic Clocks (New York: Springer) vol 2 chap 19 p 417
[11]
Grewal M S, Andrews A P and Bartone C G 2013 Global Navigation Satellite Systems, Inertial Navigation And Integration (New York: John Wiley & Sons) chap 2 p 9
Boyd M M, Zelevinsky T, Ludlow A D, Blatt S, Zanon-Willette T, Foreman S M and Ye J 2007 Phys. Rev. A 76 022510
[24]
Rosenb, T, Schmidt P O, Hume D B, Itano W M, Fortier T M, Stalnaker J E, Kim K, Diddams S A, Koelemeij J C J, Bergquist J C and Wineland D J 2007 Phys. Rev. Lett.98 220801