The mixing of scalar mesons is an open problem since their structure is unclear and controversial. By introducing the ideal mixing of scalar mesons, we dynamically investigate the hyperon-nucleon interaction in the chiral SU(3) quark model by solving the resonating group method (RGM) equation. The results show that when the ideal mixing of scalar mesons is considered and the mass of a κ meson is reduced to near 780 MeV, then the hyperon-nucleon scattering data can be reasonably described in the chiral SU(3) quark model. Hence we find that the experimental mass of the κ meson is around 780 MeV, and f0(600) and f0(980) mesons are the ideal mixing of scalar singlet and octet mesons.
The mixing of scalar mesons is an open problem since their structure is unclear and controversial. By introducing the ideal mixing of scalar mesons, we dynamically investigate the hyperon-nucleon interaction in the chiral SU(3) quark model by solving the resonating group method (RGM) equation. The results show that when the ideal mixing of scalar mesons is considered and the mass of a κ meson is reduced to near 780 MeV, then the hyperon-nucleon scattering data can be reasonably described in the chiral SU(3) quark model. Hence we find that the experimental mass of the κ meson is around 780 MeV, and f0(600) and f0(980) mesons are the ideal mixing of scalar singlet and octet mesons.
DAI Lian-Rong. Ideal Mixing of Scalar Mesons and Hyperon-Nucleon Interaction[J]. 中国物理快报, 2010, 27(6): 61301-061301.
DAI Lian-Rong. Ideal Mixing of Scalar Mesons and Hyperon-Nucleon Interaction. Chin. Phys. Lett., 2010, 27(6): 61301-061301.
[1] Dai L R 2010 Chin. Phys. Lett. 27 012102 Dai L R, Liu J and Zhang D 2009 Chin. Phys. C 33 1397 [2] Zhang Z Y, Yu Y W, Shen P N, Dai L R, Faessler A and Straub U 1997 Nucl. Phys. A 625 59 [3] Dai L R, Zhang H, Fu Y, Zhang Z Y and Yu Y W 2008 Mod. Phys. Lett. A 23 2413 [4] Pang H R, Ping J L, Wang F and Zhao E G 2004 Commun. Theor. Phys. 41 67 [5] Obukhovsky I T and Kusainov A M 1990 Phys. Lett. B 238 142 Kusainov A M, Neudatchin V G and Obukhovsky I T 1991 Phys. Rev. C 44 2343 Buchmann A, Fernandez E and Yazaki K 1991 Phys. Lett. B 269 35 Henley E M and Miller G A 1991 Phys. Lett. B 251 453 [6] Amsler C et al (Particle Data Group) 2008 Phys. Lett. B 667 1 [7] Ablikm M et al (BES Collaboration) 2004 Phys. Lett. B 598 149 [8] Ablikm M et al (BES Collaboration) 2007 Phys. Lett. B 645 19 [9] Ablikm M et al (BES Collaboration) 2006 Phys. Lett. B 633 681 [10] Aitala E M et al (E791 Collaboration) 2002 Phys. Rev. Lett. 89 121801 [11] Oller J A and Oset E 1997 Nucl. Phys. A 620 438 Oller J A, Oset E and Pelaez J R 1999 Phys. Rev. D 59 074001 Oller J A and E Oset 1999 Phys. Rev. D 60 074023 [12] Zheng H Q 2008 Mod. Phys. Lett. A 23 2218 Zhou Z Y, Qin G Y, Zhang P, Xiao Z G, Zheng H Q and Wu N 2005 J. High Energy Phys. 0502 043 Zhou Z Y and Zheng H Q 2006 Nucl. Phys. A 775 212 Zheng H Q, Zhou Z Y, Qin G Y, Xiao Zhiguang, Wang J J and Wu N Nucl. Phys. A 2004 733 235 [13] Bugg D V 2006 Phys. Lett. B 632 471 [14] Pelaez J R 2004 Mod. Phys. Lett. A 19 2879 [15] Ishida M, Ishida S, Komada T and Matsumoto S I 2001 Phys. Lett. B 518 47 Ishida M, Komada T, Ishida S, Ishida T, Takamatsu K and Tsuru T 2000 Prog. Theor. Phys. 104 203 [16] Alexander G, Karshon U, Shapira A, Yekutieli G, Engelmann R, Filthuth H and Lughofer W 1968 Phys. Rev. 173 1452 [17] Sechi-Zorn B, Kehoe B, Twitty J and Burnstein R A 1968 Phys. Rev. 175 1735 [18] Kadyk J A, Alexander G, Chan J H, Gaposchkin P and Trilling G H 1971 Nucl. Phys. B 27 13 [19] Zhang Z Y, Yu Y W, Ching C R, Ho T H and Lu Z D 2000 Phys. Rev. C 61 065204 Yuan X Q, Zhang Z Y, Yu Y W and Shen P N 1999 Phys. Rev. C 60 045203 [20] Li Q B and Shen P N 2000 Phys. Rev. C 62 028202 Li Q B, Shen P N, Zhang Z Y and Yu Y W 2001 Nucl. Phys. A 683 487 [21] Nagels M M, Rijken T A and de Swart J J 1979 Phys. Rev. D 20 1633