Multi-Λ Hypernuclei in an Effective Hadronic Model
LIANG Yin-Hua1, GUO Hua1, LIU Yu-Xin 2,3
1Department of Technical Physics, Peking University, Beijing 1008712Department of Physics and the MOE Key Laboratory of Heavy Ion Physics, Peking University, Beijing 1008713Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000
Multi-Λ Hypernuclei in an Effective Hadronic Model
LIANG Yin-Hua1;GUO Hua1;LIU Yu-Xin 2,3
1Department of Technical Physics, Peking University, Beijing 1008712Department of Physics and the MOE Key Laboratory of Heavy Ion Physics, Peking University, Beijing 1008713Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000
摘要We extend the chiral hadronic model (FST) with an inclusion of Λhyperon to investigate the properties of multi-Λhypernuclei. With such an effective hadronic model in the relativistic mean-field approximation, we accomplish the calculations with both the conventional strong Λ--Λ interaction and the weak Λ--Λ interaction determined from recent experiment. Our calculations indicate that not only the strong but also the weak Λ--Λ interaction provide tighter binding for multi-Λ hypernuclei than the ones with only nucleons. However the strong interaction generates a binding slightly tighter than the weak interaction.
Abstract:We extend the chiral hadronic model (FST) with an inclusion of Λhyperon to investigate the properties of multi-Λhypernuclei. With such an effective hadronic model in the relativistic mean-field approximation, we accomplish the calculations with both the conventional strong Λ--Λ interaction and the weak Λ--Key words:
21.10.Dr12.39.Fe13.75.Ev21.80.+a
[1] Chrien R E 1988 Nucl. Phys. A 478 705c [2] Pile P H et al 1991 Phys. Rev. Lett. 66 2585 [3] Hasegawa T et al 1996 Phys. Rev. C 53 1210 [4] Schaffner J, Dover C B, Gal A, Greiner Cand Stocker H 1993 Phys. Rev. Lett. 71 1328 [5] Wang P, Guo H, Zhang Z Y, Yu Y W, Su R Kand Song H Q 2002 Nucl. Phys. A 705 455 [6] Tsushima K, Saito K, Haidenbauer Jand Thomas A W 1998 Nucl. Phys. A 630 691 [7] Furnstahl R J and Tang H B 1995 Phys. Rev. C 521368 [8] Furnstahl R J, Serot B D and Tang H B 1996 Nucl. Phys. A 598 539 [9] Furnstahl R J, Serot B D and Tang H B 1997 Nucl. Phys. A 615 441 Furnstahl R J, Serot B D and Tang H B 1998 Nucl. Phys.A 640 505 [10] Zhang L L, Song H Q, Wang P and Su R K 1999 Phys. Rev.C 59 3292 [11] Yang L, Qian W L, Su R K and Song H Q 2004 Phys. Rev. C 70 045207 [12] MeIntire J 2003 arXiv: nucl-th 0311047 [13] Liang Y H and Guo H 2005 Chin. Phys. Lett. 22 298 [14] Tan Y H, Luo Y A, Ning P Z and Ma Z Y 2001 Chin. Phys. Lett. 18 1030 Tan Y H and Ning P Z 2004 Europhys. Lett. 67 355 Tan Y H and Ning P Z Eur. Phys. J. A 20 257 Ning P Z, Tan Y H, Li L and Luo Y A 2004 HighEnergy Phys. Nucl. Phys. 28 1336 Wang Q L, Dang L, Zhong X H, Song C Y and Ning P Z 2006 Europhys. Lett. 75 36 [15] Takahashi H et al 2001 Phys. Rev. Lett. 87 212502 [16] Danysz M et al 1963 Nucl. Phys. 49 121 [17] Prowse D J 1966 Phys. Rev. Lett. 17 782 [18] Dover C B, Millener D J, Gal A and Davis D H 1991 Phys.Rev. C 44 1905 [19] Song H Q, Su R K and Qian W L 2003 Phys. Rev. C 68 055201 [20] Schaffner J, Dover C B, Gal A, Greiner C Dand Stocker H 1994 Ann. Phys. (N.Y.) 235 35 [21] Yang L, Yin S Y, Qian W L and Su R K 2006 Phys. Rev. C 73 025203 [22] Qian W L, Su R K and Song H Q 2004 J. Phys. G 30 1893 [23] Shen H, Yang F and Toki H 2006 Prog. Theor. Phys. 115 325 [24] Serot B D and Walecka J D 1986 in Advances in NuclearPhysics ed Negele J W and Vogt E (New York: Plenum) vol 16 p 1 [25] Glendenning N K and Moszkowski S A 1991 Phys. Rev. Lett 67 2414 [26] Reinhard P G 1989 Rep. Prog. Phys. 52 439