Projective Synchronization in Time-Delayed Chaotic Systems
FENG Cun-Fang, ZHANG Yan, WANG Ying-Hai
Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000
Projective Synchronization in Time-Delayed Chaotic Systems
FENG Cun-Fang;ZHANG Yan;WANG Ying-Hai
Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000
关键词 :
05.45.Xt ,
05.45.Jn
Abstract : For the first time, we report on projective synchronization between two time delay chaotic systems with single time delays. It overcomes some limitations of the previous work, where projective synchronization has been investigated only in finite-dimensional chaotic systems, so we can achieve projective synchronization in infinite-dimensional chaotic systems. We give a general method with which we can achieve projective synchronization in time-delayed chaotic systems. The method is illustrated using the famous delay differential equations related to optical bistability. Numerical simulations fully support the analytical approach.
Key words :
05.45.Xt
05.45.Jn
出版日期: 2006-06-01
:
05.45.Xt
(Synchronization; coupled oscillators)
05.45.Jn
(High-dimensional chaos)
引用本文:
FENG Cun-Fang;ZHANG Yan;WANG Ying-Hai. Projective Synchronization in Time-Delayed Chaotic Systems[J]. 中国物理快报, 2006, 23(6): 1418-1421.
FENG Cun-Fang, ZHANG Yan, WANG Ying-Hai. Projective Synchronization in Time-Delayed Chaotic Systems. Chin. Phys. Lett., 2006, 23(6): 1418-1421.
链接本文:
https://cpl.iphy.ac.cn/CN/
或
https://cpl.iphy.ac.cn/CN/Y2006/V23/I6/1418
[1]
FENG Cun-Fang;ZHANG Yan; WANG Ying-Hai. Different Types of Synchronization in Time-Delayed Systems [J]. 中国物理快报, 2007, 24(1): 50-53.
[2]
ZHOU Lu-Qun;OUYANG Qi. Phase Propagations in a Coupled Oscillator--Excitor System of FitzHugh--Nagumo Models [J]. 中国物理快报, 2006, 23(7): 1709-1712.
[3]
SHEN Jian-He;CHEN Shu-Hui;CAI Jian-Ping. Chaos Synchronization Criterion and Its Optimizations for a Nonlinear Transducer System via Linear State Error Feedback Control [J]. 中国物理快报, 2006, 23(6): 1406-1409.
[4]
ZHANG Ke;WANG Hong-Li;QIAO Chun;OUYANG Qi. Hexagonal Standing-Wave Patterns in Periodically Forced Reaction--Diffusion Systems [J]. 中国物理快报, 2006, 23(6): 1414-1417.
[5]
GUAN Jian-Yue; XU Xin-Jian;WU Zhi-Xi;WANG Ying-Hai. Synchronization of Coupled Oscillators on Newman--Watts Small-World Networks [J]. 中国物理快报, 2006, 23(6): 1410-1413.
[6]
ZHANG Shan;YANG Shi-Ping;LIU Hu. Targeting of Kolmogorov--Arnold--Moser Orbits by the Bailout Embedding Method in Two Coupled Standard Maps [J]. 中国物理快报, 2006, 23(5): 1114-1117.
[7]
WU Li-Yan;LIU Zong-Hua. Enhancement of Information Transmission by Array Induced Stochastic Resonance in the Processes of Amplitude and Frequency Modulations [J]. 中国物理快报, 2006, 23(5): 1110-1113.
[8]
LIU Zeng-Rong;LUO Ji-Gui. Realization of Complete Synchronization between Different Systems by Using Structure Adaptation [J]. 中国物理快报, 2006, 23(5): 1118-1121.
[9]
WU Xiang;WANG Bing-Hong;ZHOU Tao;WANG Wen-Xu;ZHAO Ming;YANG Hui-Jie. Synchronizability of Highly Clustered Scale-Free Networks [J]. 中国物理快报, 2006, 23(4): 1046-1049.
[10]
AO Bin;MA Xiao-Juan;LI Yun-Yun;ZHENG Zhi-Gang. Non-Local Coupling and Partial Synchronization in Chaotic Systems [J]. 中国物理快报, 2006, 23(4): 786-789.
[11]
QIAN Xiao-Lan;LIU Wei-Qing;YANG Jun-Zhong. Transition to Antiphase Synchronization [J]. 中国物理快报, 2006, 23(4): 790-973.
[12]
M. S. Baptista;C. Zhou;J. Kurths. Information Transmission in Phase Synchronous Chaotic Arrays [J]. 中国物理快报, 2006, 23(3): 560-563.
[13]
BU Shou-Liang;ZHANG You-Wei;WANG Bing-Hong;. Synchronizing Complex Networks by an Adaptive Adjustment Mechanism [J]. 中国物理快报, 2006, 23(11): 2909-2912.
[14]
WANG Bing;TANG Huan-Wen;XIU Zhi-Long;GUO Chong-Hui. Optimizing Synchronizability of Scale-Free Networks in Geographical Space [J]. 中国物理快报, 2006, 23(11): 3123-3126.
[15]
WANG Mao-Sheng;HOU Zhong-Huai;XIN Hou-Wen. Best Spatiotemporal Performance Sustained by Optimal Number of Random Shortcuts on Complex Networks [J]. 中国物理快报, 2006, 23(10): 2666-2669.