Hexagonal Standing-Wave Patterns in Periodically Forced Reaction--Diffusion Systems
ZHANG Ke, WANG Hong-Li, QIAO Chun, OUYANG Qi
School of Physics, and State Key Laboratory for Mesoscopic Physics, Peking University, Beijing 100871
Hexagonal Standing-Wave Patterns in Periodically Forced Reaction--Diffusion Systems
ZHANG Ke;WANG Hong-Li;QIAO Chun;OUYANG Qi
School of Physics, and State Key Laboratory for Mesoscopic Physics, Peking University, Beijing 100871
关键词 :
05.45.Xt ,
82.40.Ck
Abstract : The periodically forced spatially extended Brusselator is investigated in the oscillating regime. The temporal response and pattern formation within the 2:1 frequency-locking band where the system oscillates at one half of the forcing frequency are examined. An hexagonal standing-wave pattern and other resonant patterns are observed. The detailed phase diagram of resonance structure in the forcing frequency and forcing amplitude parameter space is calculated. The transitions between the resonant standing-wave patterns are of hysteresis when control parameters are varied, and the presence of multiplicity is demonstrated. Analysis in the framework of amplitude equation reveals that the spatial patterns of the standing waves come out as a result of Turing bifurcation in the amplitude equation.
Key words :
05.45.Xt
82.40.Ck
出版日期: 2006-06-01
:
05.45.Xt
(Synchronization; coupled oscillators)
82.40.Ck
(Pattern formation in reactions with diffusion, flow and heat transfer)
引用本文:
ZHANG Ke;WANG Hong-Li;QIAO Chun;OUYANG Qi. Hexagonal Standing-Wave Patterns in Periodically Forced Reaction--Diffusion Systems[J]. 中国物理快报, 2006, 23(6): 1414-1417.
ZHANG Ke, WANG Hong-Li, QIAO Chun, OUYANG Qi. Hexagonal Standing-Wave Patterns in Periodically Forced Reaction--Diffusion Systems. Chin. Phys. Lett., 2006, 23(6): 1414-1417.
链接本文:
https://cpl.iphy.ac.cn/CN/
或
https://cpl.iphy.ac.cn/CN/Y2006/V23/I6/1414
[1]
FENG Cun-Fang;ZHANG Yan; WANG Ying-Hai. Different Types of Synchronization in Time-Delayed Systems [J]. 中国物理快报, 2007, 24(1): 50-53.
[2]
WU Ning-Jie;LI Bing-Wei;YING He-Ping. Effects of Periodic Forcing Amplitude on the Spiral Wave Resonance Drift [J]. 中国物理快报, 2006, 23(8): 2030-2033.
[3]
ZHOU Lu-Qun;OUYANG Qi. Phase Propagations in a Coupled Oscillator--Excitor System of FitzHugh--Nagumo Models [J]. 中国物理快报, 2006, 23(7): 1709-1712.
[4]
FENG Cun-Fang;ZHANG Yan;WANG Ying-Hai. Projective Synchronization in Time-Delayed Chaotic Systems [J]. 中国物理快报, 2006, 23(6): 1418-1421.
[5]
GUAN Jian-Yue; XU Xin-Jian;WU Zhi-Xi;WANG Ying-Hai. Synchronization of Coupled Oscillators on Newman--Watts Small-World Networks [J]. 中国物理快报, 2006, 23(6): 1410-1413.
[6]
SHEN Jian-He;CHEN Shu-Hui;CAI Jian-Ping. Chaos Synchronization Criterion and Its Optimizations for a Nonlinear Transducer System via Linear State Error Feedback Control [J]. 中国物理快报, 2006, 23(6): 1406-1409.
[7]
WU Li-Yan;LIU Zong-Hua. Enhancement of Information Transmission by Array Induced Stochastic Resonance in the Processes of Amplitude and Frequency Modulations [J]. 中国物理快报, 2006, 23(5): 1110-1113.
[8]
LIU Zeng-Rong;LUO Ji-Gui. Realization of Complete Synchronization between Different Systems by Using Structure Adaptation [J]. 中国物理快报, 2006, 23(5): 1118-1121.
[9]
AO Bin;MA Xiao-Juan;LI Yun-Yun;ZHENG Zhi-Gang. Non-Local Coupling and Partial Synchronization in Chaotic Systems [J]. 中国物理快报, 2006, 23(4): 786-789.
[10]
QIAN Xiao-Lan;LIU Wei-Qing;YANG Jun-Zhong. Transition to Antiphase Synchronization [J]. 中国物理快报, 2006, 23(4): 790-973.
[11]
WU Xiang;WANG Bing-Hong;ZHOU Tao;WANG Wen-Xu;ZHAO Ming;YANG Hui-Jie. Synchronizability of Highly Clustered Scale-Free Networks [J]. 中国物理快报, 2006, 23(4): 1046-1049.
[12]
M. S. Baptista;C. Zhou;J. Kurths. Information Transmission in Phase Synchronous Chaotic Arrays [J]. 中国物理快报, 2006, 23(3): 560-563.
[13]
BU Shou-Liang;ZHANG You-Wei;WANG Bing-Hong;. Synchronizing Complex Networks by an Adaptive Adjustment Mechanism [J]. 中国物理快报, 2006, 23(11): 2909-2912.
[14]
WANG Bing;TANG Huan-Wen;XIU Zhi-Long;GUO Chong-Hui. Optimizing Synchronizability of Scale-Free Networks in Geographical Space [J]. 中国物理快报, 2006, 23(11): 3123-3126.
[15]
WANG Mao-Sheng;HOU Zhong-Huai;XIN Hou-Wen. Best Spatiotemporal Performance Sustained by Optimal Number of Random Shortcuts on Complex Networks [J]. 中国物理快报, 2006, 23(10): 2666-2669.