Anomalously Strong Scattering of Spontaneously Produced Laser Radiation in the First Free-Electron Laser and Study of Free-Electron Two-Quantum Stark Lasing in an Electric Wiggler with Quantum-Wiggler Electrodynamics
S. H. Kim
Department of Physics, University of Texas at Arlington, PO Box 19059, Arlington, Texas 76019, USA
Anomalously Strong Scattering of Spontaneously Produced Laser Radiation in the First Free-Electron Laser and Study of Free-Electron Two-Quantum Stark Lasing in an Electric Wiggler with Quantum-Wiggler Electrodynamics
S. H. Kim
Department of Physics, University of Texas at Arlington, PO Box 19059, Arlington, Texas 76019, USA
Abstract: We calculate the scattering cross section of an electron with respect to the spontaneously produced laser radiation in the first free-electron laser (FEL) with quantum-wiggler electrodynamics (QWD). The cross section is 1016 times the Thomson cross section, confirming the result obtained by a previous analysis of the experimental data. A QWD calculation show that spontaneous emission in an FEL using only an electric wiggler can be very strong while amplification through net stimulated emission is practically negligible.
S. H. Kim. Anomalously Strong Scattering of Spontaneously Produced Laser Radiation in the First Free-Electron Laser and Study of Free-Electron Two-Quantum Stark Lasing in an Electric Wiggler with Quantum-Wiggler Electrodynamics[J]. 中国物理快报, 2006, 23(6): 1422-1425.
S. H. Kim. Anomalously Strong Scattering of Spontaneously Produced Laser Radiation in the First Free-Electron Laser and Study of Free-Electron Two-Quantum Stark Lasing in an Electric Wiggler with Quantum-Wiggler Electrodynamics. Chin. Phys. Lett., 2006, 23(6): 1422-1425.