Complete Synchronization in Coupled Chaotic HR Neurons with Symmetric Coupling Schemes
WANG Hai-Xia, LU Qi-Shao, WANG Qing-Yun
School of Science, Beijing University of Aeronautics and Astronautics, Beijing 100083
Complete Synchronization in Coupled Chaotic HR Neurons with Symmetric Coupling Schemes
WANG Hai-Xia;LU Qi-Shao;WANG Qing-Yun
School of Science, Beijing University of Aeronautics and Astronautics, Beijing 100083
关键词 :
05.45.-a ,
05.45.Xt
Abstract : Chaos synchronization in an array of coupled chaotic neurons with symmetric coupling is investigated. A criterion for the stability of the synchronization manifold is deduced by transforming the variational equation of the coupled system into a block diagonal one, and the critical coupling strengths for synchronization in different coupled cases are given. As examples for illustration, the HR neurons with the open-ended (i.e. chain), ring, star and all-to-all (i.e. global) coupling schemes are considered. It is shown that the coupling scheme plays an important role in synchronization and information transmission of neurons.
Key words :
05.45.-a
05.45.Xt
出版日期: 2005-09-01
:
05.45.-a
(Nonlinear dynamics and chaos)
05.45.Xt
(Synchronization; coupled oscillators)
引用本文:
WANG Hai-Xia;LU Qi-Shao;WANG Qing-Yun. Complete Synchronization in Coupled Chaotic HR Neurons with Symmetric Coupling Schemes[J]. 中国物理快报, 2005, 22(9): 2173-2175.
WANG Hai-Xia, LU Qi-Shao, WANG Qing-Yun. Complete Synchronization in Coupled Chaotic HR Neurons with Symmetric Coupling Schemes. Chin. Phys. Lett., 2005, 22(9): 2173-2175.
链接本文:
https://cpl.iphy.ac.cn/CN/
或
https://cpl.iphy.ac.cn/CN/Y2005/V22/I9/2173
[1]
CHEN Yue-Hua;WU Zhi-Yuan;YANG Jun-Zhong. Noise-Mediated Generalized Synchronization [J]. 中国物理快报, 2007, 24(1): 46-49.
[2]
ZHOU Ya-Tong;ZHANG Tai-Yi;SUN Jian-Cheng. Multi-Scale Gaussian Processes: a Novel Model for Chaotic Time Series Prediction [J]. 中国物理快报, 2007, 24(1): 42-45.
[3]
FENG Cun-Fang;ZHANG Yan; WANG Ying-Hai. Different Types of Synchronization in Time-Delayed Systems [J]. 中国物理快报, 2007, 24(1): 50-53.
[4]
WU Ning-Jie;LI Bing-Wei;YING He-Ping. Effects of Periodic Forcing Amplitude on the Spiral Wave Resonance Drift [J]. 中国物理快报, 2006, 23(8): 2030-2033.
[5]
ZHANG Jian-Guo;YAN Jia-Ren;LIU Zi-Ran;WANG Li. Evolution of Weighted Networks by Duplication--Divergence Mechanism [J]. 中国物理快报, 2006, 23(8): 2330-2333.
[6]
ZHOU Lu-Qun;OUYANG Qi. Phase Propagations in a Coupled Oscillator--Excitor System of FitzHugh--Nagumo Models [J]. 中国物理快报, 2006, 23(7): 1709-1712.
[7]
FENG Cun-Fang;ZHANG Yan;WANG Ying-Hai. Projective Synchronization in Time-Delayed Chaotic Systems [J]. 中国物理快报, 2006, 23(6): 1418-1421.
[8]
SHEN Jian-He;CHEN Shu-Hui;CAI Jian-Ping. Chaos Synchronization Criterion and Its Optimizations for a Nonlinear Transducer System via Linear State Error Feedback Control [J]. 中国物理快报, 2006, 23(6): 1406-1409.
[9]
ZHOU Zhen;ZHAO Hong. Improvement of the Hopfield Neural Network by MC-Adaptation Rule [J]. 中国物理快报, 2006, 23(6): 1402-1405.
[10]
GUAN Jian-Yue; XU Xin-Jian;WU Zhi-Xi;WANG Ying-Hai. Synchronization of Coupled Oscillators on Newman--Watts Small-World Networks [J]. 中国物理快报, 2006, 23(6): 1410-1413.
[11]
ZHANG Ke;WANG Hong-Li;QIAO Chun;OUYANG Qi. Hexagonal Standing-Wave Patterns in Periodically Forced Reaction--Diffusion Systems [J]. 中国物理快报, 2006, 23(6): 1414-1417.
[12]
ZHANG Shan;YANG Shi-Ping;LIU Hu. Targeting of Kolmogorov--Arnold--Moser Orbits by the Bailout Embedding Method in Two Coupled Standard Maps [J]. 中国物理快报, 2006, 23(5): 1114-1117.
[13]
WU Li-Yan;LIU Zong-Hua. Enhancement of Information Transmission by Array Induced Stochastic Resonance in the Processes of Amplitude and Frequency Modulations [J]. 中国物理快报, 2006, 23(5): 1110-1113.
[14]
LIU Zeng-Rong;LUO Ji-Gui. Realization of Complete Synchronization between Different Systems by Using Structure Adaptation [J]. 中国物理快报, 2006, 23(5): 1118-1121.
[15]
WU Xiang;WANG Bing-Hong;ZHOU Tao;WANG Wen-Xu;ZHAO Ming;YANG Hui-Jie. Synchronizability of Highly Clustered Scale-Free Networks [J]. 中国物理快报, 2006, 23(4): 1046-1049.