摘要Electronic structures and absorption spectra for perfect PbWO4 (PWO) crystals and the crystal containing aggregated defect[VPb2---VO2+--VPb2-]2- have been calculated using density functional theory code CASTEP with the lattice structure optimized. The calculated absorption spectra of the PWO crystal containing the aggregated defect [VPb2---VO2+--VPb2-]2- exhibit two absorption bands peaking at 1.90eV (650nm) and 3.02eV(410nm). It is predicted that the 420 and 680nm absorption bands are related to the existence of the aggregated defect [VPb2---VO2+--VPb2-]2- in the PWO crystal.
Abstract:Electronic structures and absorption spectra for perfect PbWO4 (PWO) crystals and the crystal containing aggregated defect[VPb2---VO2+--VPb2-]2- have been calculated using density functional theory code CASTEP with the lattice structure optimized. The calculated absorption spectra of the PWO crystal containing the aggregated defect [VPb2---VO2+--VPb2-]2- exhibit two absorption bands peaking at 1.90eV (650nm) and 3.02eV(410nm). It is predicted that the 420 and 680nm absorption bands are related to the existence of the aggregated defect [VPb2---VO2+--VPb2-]2- in the PWO crystal.
LIU Ting-Yu;ZHANG Qi-Ren;ZHUANG Song-Lin. First-Principles Studies on Electronic Structures and Absorption Spectra of PbWO4 Crystals with Defect [VPb2---VO2+ --VPb2-]2-[J]. 中国物理快报, 2007, 24(8): 2361-2364.
LIU Ting-Yu, ZHANG Qi-Ren, ZHUANG Song-Lin. First-Principles Studies on Electronic Structures and Absorption Spectra of PbWO4 Crystals with Defect [VPb2---VO2+ --VPb2-]2-. Chin. Phys. Lett., 2007, 24(8): 2361-2364.
[1] Korzhik M V 1996 Proc. Int. Conf. InorganicScintillators and Their Applications, SCINT96, Delft University (Amsterdam: North-Holland) p 241 [2] Feng X Q et al 1997 J. Inorg. Mater. 12 449 (in Chinese) [3] Nikl M et al 1996 Phys. Status Solidi B 195 311 [4] Moreau J M et al 1996 J. Alloys Compd. 238 46 [5] Lin Q S et al 2001 Sol. Stat. Commun. 118 221 [6] Liao J Y et al 1997 J. Inorg. Mater. 12 286 (inChinese) [7] Moreau J M, Gladyshevshii R E, Galez P et al 1999 J.Alloys Compd. 284 104 [8] Epelbaum B M et al 1997 J. Cryst. Growth 178 426 [9] Annenkov A et al 1998 Phys. Status Solidi A 170 47 [10] Annenkov A, Korzhik M V and Lecoq P 2002 Nucl. Instrum.Methods Phys. Res. A 490 30 [11] Grigorjeva L et al 2000 Nucl. Instrum. Methods Phys.Res. B 166-167 329 [12] Zhang Q R et al 2003 Phys. Rev. B 68 064101 [13] Nikl M (Wide Band Gap) 2000 Phys. Status Solidi A 178 595 [14] Nikl M, Nitsch K, Baccaro S et al 1997 J. Appl. Phys. 82 1 [15] Liu T Y et al 2001 Phys. Status Solidi A 184 341 [16] Abraham Y B, Holzwarth N A W and Williams R T 2001 Phys.Rev. B 64 245109 [17] Yang X P, Chen J W, Jiang H et al 2004 Phys. Rev. B 69 193401 [18] Wan J F and Wang J N 2005 Physica B 355 172 [19] Liu T Y et al 2004 Phys. Lett. A 333 473 [20] Liu T Y et al 2005 J. Electron. Spectrosc. 142 139 [21] Liu T Y et al 2005 Phys. Lett. A 343 238 [22] Payne M C, Teter M P, Alan D C et al 1992 Rev. Mod.Phys. 64 1045 [23] Segall M D, Lindan P L D, Probert M J et al 2002 J. Phys.:Condens. Matter 14 2717 [24] Liu T Y et al 2004 Solid State Commun. 132 169 [25] Godby R W 1992 Topics Appl. Phys. 69 51 [26] Fan R C 2001 Spectroscopy of Solid (Hefei: Universityof Science and Technology of China) (in Chinese) [27] Abraham Y et al 2000 Phys. Rev. B 62 1733 [28] Feng X Q, Lin Q S, Man Z Y et al 2002 Acta Phys. Sin. 51 315 (in Chinese)