Comparative Study on Hole Transport in N,N'-bis(naphthalen-1-yl)-N,N'- bis(pheny) Benzidine and 4,4',4''-tri(N-carbazolyl)triphenylamine
QIAO Xian-Feng1,2, CHEN Jiang-Shan1, MA Dong-Ge1
1State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 2Graduate School of the Chinese Academy of Sciences, Beijing 100049
Comparative Study on Hole Transport in N,N'-bis(naphthalen-1-yl)-N,N'- bis(pheny) Benzidine and 4,4',4''-tri(N-carbazolyl)triphenylamine
QIAO Xian-Feng1,2, CHEN Jiang-Shan1, MA Dong-Ge1
1State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 2Graduate School of the Chinese Academy of Sciences, Beijing 100049
Hole transport characteristics in N,N'-bis(naphthalen-1-yl)-N,N'-bis(pheny) benzidine (NPB) and 4,4',4''-tri(N-carbazolyl)triphenylamine (TCTA) are comparatively investigated. The current density-voltage (J-V) characteristics of hole-only devices based on NPB and TCTA at different temperatures and thicknesses show that the hole current is dominated by the bulk conduction with an exponential trap distribution. Detailed analyses of the J-V characteristics give the trap densities Nt of (6.3±0.3)×1018 and (1.9±0.02)×1018 cm3, characteristic trap depths of 135±6 and 117±5 meV, hole mobilities of (8.1±0.5)×10-5 and (1.9±0.1)×10-4 cm2V-1s-1 for NPB and TCTA, respectively. It is found that TCTA exhibits higher hole mobility. Obviously, this is directly related to the lower trap density and shallow trap depth in TCTA films, leading to good charge carrier transport.
Hole transport characteristics in N,N'-bis(naphthalen-1-yl)-N,N'-bis(pheny) benzidine (NPB) and 4,4',4''-tri(N-carbazolyl)triphenylamine (TCTA) are comparatively investigated. The current density-voltage (J-V) characteristics of hole-only devices based on NPB and TCTA at different temperatures and thicknesses show that the hole current is dominated by the bulk conduction with an exponential trap distribution. Detailed analyses of the J-V characteristics give the trap densities Nt of (6.3±0.3)×1018 and (1.9±0.02)×1018 cm3, characteristic trap depths of 135±6 and 117±5 meV, hole mobilities of (8.1±0.5)×10-5 and (1.9±0.1)×10-4 cm2V-1s-1 for NPB and TCTA, respectively. It is found that TCTA exhibits higher hole mobility. Obviously, this is directly related to the lower trap density and shallow trap depth in TCTA films, leading to good charge carrier transport.
QIAO Xian-Feng;CHEN Jiang-Shan;MA Dong-Ge. Comparative Study on Hole Transport in N,N'-bis(naphthalen-1-yl)-N,N'- bis(pheny) Benzidine and 4,4',4''-tri(N-carbazolyl)triphenylamine[J]. 中国物理快报, 2010, 27(8): 88504-088504.
QIAO Xian-Feng, CHEN Jiang-Shan, MA Dong-Ge. Comparative Study on Hole Transport in N,N'-bis(naphthalen-1-yl)-N,N'- bis(pheny) Benzidine and 4,4',4''-tri(N-carbazolyl)triphenylamine. Chin. Phys. Lett., 2010, 27(8): 88504-088504.
[1] Tang C W and VanSlyke S A 1987 Appl. Phys. Lett. 51 913 [2] Li T L, Li W L, Chu B, Su Z S, Chen Y R Chen, Han L L, Zhang D Y, Li X, Zhang F X, Sum T C and Huan A C H 2009 J. Phys. D: Appl. Phys. 42 065103 [3] Wang Q, Ding J, Cheng Y, Wang L and Ma D 2009 J. Phys. D: Appl. Phys. 42 065106 [4] Yu S Y, Yi M D and Ma D G 2008 Chin. Phys. Lett. 25 755 [5] Brütting W, Berleb S and Mückl A G 2001 Org. Electron. 2 1 [6] Wang X R, Zhang Z Q, Ma D G and Sun R G 2008 Chin. Phys. Lett. 25 4425 [7] Cao G H, Qin D S, Guan M, Cao J S, Zeng Y P and Li J M 2007 Chin. Phys. Lett. 24 1380 [8] Xiong Y, Zhang Y, Zhou J L, Peng J B, Huang W B and Cao Y 2007 Chin. Phys. Lett. 24 3547 [9] Cao J S, Guan M, Cao G H, Zeng Y P, Li J M and Qin D S 2008 Chin. Phys. Lett. 25 719 [10] Liu Q, Duan L, Zhang D Q, Qiao J, Wang L D and Qiu Y 2009 Chin. Phys. Lett. 26 106801 [11] Zhou J, Zhou Y C, Gao X D, Wu C Q, Ding X M and Hou X Y 2009 J. Phys. D: Appl. Phys. 42 035103 [12] Kachirski I M 2008 J. Phys.: Condens. Matter 20 475205 [13] Yimer Y Y, Bobbert P A and Coehoorn R 2008 J. Phys.: Condens. Matter 20 335204 [14] Kumar P, Misra A, Kamalasanan M N, Jain S C and Kumar V 2007 J. Phys. D: Appl. Phys. 40 561 [15] Xiong Y, Peng J B, Wu H B and Wang J 2009 Chin. Phys. Lett. 26 097801 [16] Yang G, Zhang D, Wang, J, Jiang Q, Zhong J, Yu J, Zhu F, Luo K, Xie Y and Xu L 2009 Chin. Phys. Lett. 26 077804 [17] Zhang Y, Hou Q, Niu Q, Zheng S, Li S, He M and Fan G 2009 Chin. Phys. Lett. 26 077811 [18] Qu S and Peng J 2008 Chin. Phys. Lett. 25 3052 [19] Hou L, Li W Duan L and Qiu Y 2008 Chin. Phys. Lett. 25 1457 [20] Wu X, Hua Y, Yin S, Zhang L, Wang Y, Hou Q and Zhang J 2008 Chin. Phys. Lett. 25 294 [21] Lampert M A 1956 Phys. Rev. 103 1648 [22] Blom P W M, de Jong M J M and Vleggaar J J M 1996 Appl. Phys. Lett. 68 3308 [23] Mandoc M M, de Boer B and Blom P W M 2006 Phys. Rev. B 73 155205 [24] Ma D and Hümmelgen I A 2000 J. Appl. Phys. 87 312 [25] Chung D S, Lee D H, Yang C, Hong K, Park C E, Won Park J and Kwon S-K 2008 Appl. Phys. Lett. 93 033303 [26] Kuwubara Y, Ogawa H, Inada H, Noma N and Shirota Y 1994 Adv. Mater. 6 677 [27] Wang F, Qiao X, Xiong T and Ma D 2009 J. Appl. Phys. 105 084518 [28] Kim S H, Jang J, Yook K S, Lee J Y, Gong M-S, Ryu S, Chang G-k and Chang H J 2008 J. Appl. Phys. 103 054502 [29] Staudigel J, Stößel M, Steuber F and Simmerer J 1999 J. Appl. Phys. 86 3895 [30] Chu T Y and Song O K 2007 Appl. Phys. Lett. 90 203512 [31] You H, Dai Y, Zhang Z and Ma D 2007 J. Appl. Phys. 101 026105 [32] Yuan Y, Han S, Grozea D and Lu Z H 2006 Appl. Phys. Lett. 88 093503 [33] Di C, Yu G, Liu Y, Xu X, Song Y, Zhu D 2006 Appl. Phys. Lett. 89 033502 [34] Malliaras G G, Salem J R, Brock P J and Scott C 1998 Phys. Rev. B 58 R13411 [35] S C Tse, S W Tsang and S K So 2006 Proc. SPIE 6333 63331P [36] Bassler H 1993 Phys. Status Solidi B 175 15