Phase Relations and Pressure-Volume-Temperature Equation of State of Galena
FAN Da-Wei1, ZHOU Wen-Ge1, WEI Shu-Yi1,3, LIU Jing2, LI Yan-Chun2, JIANG Sheng2, XIE Hong-Sen1
1Laboratory for Study of the Earth's Interior and Geofluids, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 2Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 3Graduate University of the Chinese Academy of Sciences, Beijing 100049
Phase Relations and Pressure-Volume-Temperature Equation of State of Galena
FAN Da-Wei1, ZHOU Wen-Ge1, WEI Shu-Yi1,3, LIU Jing2, LI Yan-Chun2, JIANG Sheng2, XIE Hong-Sen1
1Laboratory for Study of the Earth's Interior and Geofluids, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 2Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 3Graduate University of the Chinese Academy of Sciences, Beijing 100049
The phase relations and pressure volume dependences of galena (PbS) under high pressure and high temperature are investigated by means of in situ observation using resistance heating in a diamond anvil cell and synchrotron radiation. The phase transition from NaCl type to TlI type takes place at approximately 2.4 GPa. A fit to the high temperature third-order Birch-Murnaghan equation of state yields an isothermal bulk modulus K0 = 37(3) GPa, and its pressure derivative K'0 =3.6(3), the temperature derivative of the bulk modulus (8706;K/8706;T)P=-0.022(9) GPaK-1, and the thermal expansion coefficient α0 =2.2(5)× 10-5 K-1 for TlI-type galena. The linear compressibilities β along a, b and c directions of TlI type is elastically anisotropic (βa =3.4× 10-3 GPa-1, βb =1.4×10-4 GPa-1 and βc =1.6× 10-3 GPa-1). We obtain the temperature derivative of the bulk modulus (8706;K/8706;T)P and thermal expansion coefficient α0 for TlI-type galena for the first time.
The phase relations and pressure volume dependences of galena (PbS) under high pressure and high temperature are investigated by means of in situ observation using resistance heating in a diamond anvil cell and synchrotron radiation. The phase transition from NaCl type to TlI type takes place at approximately 2.4 GPa. A fit to the high temperature third-order Birch-Murnaghan equation of state yields an isothermal bulk modulus K0 = 37(3) GPa, and its pressure derivative K'0 =3.6(3), the temperature derivative of the bulk modulus (8706;K/8706;T)P=-0.022(9) GPaK-1, and the thermal expansion coefficient α0 =2.2(5)× 10-5 K-1 for TlI-type galena. The linear compressibilities β along a, b and c directions of TlI type is elastically anisotropic (βa =3.4× 10-3 GPa-1, βb =1.4×10-4 GPa-1 and βc =1.6× 10-3 GPa-1). We obtain the temperature derivative of the bulk modulus (8706;K/8706;T)P and thermal expansion coefficient α0 for TlI-type galena for the first time.
FAN Da-Wei;ZHOU Wen-Ge;WEI Shu-Yi;LIU Jing;LI Yan-Chun;JIANG Sheng;XIE Hong-Sen. Phase Relations and Pressure-Volume-Temperature Equation of State of Galena[J]. 中国物理快报, 2010, 27(8): 86401-086401.
FAN Da-Wei, ZHOU Wen-Ge, WEI Shu-Yi, LIU Jing, LI Yan-Chun, JIANG Sheng, XIE Hong-Sen. Phase Relations and Pressure-Volume-Temperature Equation of State of Galena. Chin. Phys. Lett., 2010, 27(8): 86401-086401.
[1] Tang L Y et al 2010 Chin. Phys. Lett. 27 016402 [2] Ma Y M et al 2007 Chin. Phys. Lett. 24 1180 [3] Runge C E et al 2006 Phys. Chem. Miner. 33 699 [4] Qin S et al 2003 Chin. Phys. Lett. 20 1172 [5] Zhang W W et al 2002 Chin. Phys. Lett. 19 1666 [6] Samara G and Drichamer H G 1962 J. Phys. Chem. Solids 23 457 [7] Chattopadhyay T et al 1986 Physica B 139/140 356 [8] Knorr K, Ehm L, Hytha M, Winkler B and Depmeier W 2003 Eur. Phys. J. B 31 297 [9] Grzechnik A and Friese K 2010 J. Phys.: Conden. Matter 22 095402 [10] Ahuja R 2003 Phys. Status Solidi B 235 341 [11] Qadri S B, Yang J, Ratna B R, Skelton E F and Hu J Z 1996 Appl. Phys. Lett. 69 2205 [12] Jiang J Z et al 2000 J. Appl. Phys. 87 2658 [13] Holmes N C et al 1989 J. Appl. Phys. 66 2962 [14] Liu J, Zhao J, Che R Z and Yang Y 2000 Chin. J. High Pressure Phys. 14 247 (in Chinese) [15] Jiang X, Zhou W G, Xie H S, Liu Y G, Fan D W, Liu J, Li Y C, Luo C J and Ma M N 2007 Chin. Phys. Lett. 24 287 [16] Yu S C, Spain I L and Skelton E F 1978 Solid State Commun. 25 49 [17] Itkin G, Hearne G R, Sterer E, Pasternak M P and Potzel W 1995 Phys. Rev. B 51 3195 [18] Strössner K, Ves S, Kim C K and Cardona M 1987 Solid State Commun. 61 275 [19] Fan D W, Zhou W G, Liu C Q, Wan F, Xing Y S, Liu J, Li Y C and Xie H S 2009 Chin. Phys. Lett. 26 046402 [20] Ohtani A, Seike T, Motobayashi M and Onodera A 1982 J. Phys. Chem. Solids 43 627 [21] Kumar R S, Sekar A, Jaya N V, Natarajan S and Chichibu S 2000 J. Alloys Compd 312 4 [22] Tinoco T, Polian A, Gomez D and Itie J P 1996 Physica Status Solidi B 198 433 [23] Hao A M, Gao C X, Li M, He C Y, Huang X W, Zhang D M, Yu C L, Liu H W, Ma Y Z, Tian Y J and Zou G T 2007 J. Phys.: Conden. Matter 19 425222 [24] Philips J C and Kleinman L 1959 Phys. Rev. 116 287 [25] Cohen M N and Heine V 1961 Phys. Rev. 122 1821 [26] Xia X, Werdner D J and Zhao H 1998 Am. Mineral. 83 68 [27] Angel R J 2000 Rev. Mineral. Geochem. 41 35 [28] Nishihara Y, Takahashi E, Matsukage K and Kikegawa T 2003 Am. Mineral. 88 80 [29] Allen L C 1989 J. Am. Chem. Soc. 111 9003 [30] Zhang J 1999 Phys. Chem. Miner. 26 644