Charge Density Wave and Electron-Phonon Interaction in Epitaxial Monolayer NbSe$_{2}$ Films
Xuedong Xie1 , Dongjing Lin1 , Li Zhu1 , Qiyuan Li1 , Junyu Zong1 , Wang Chen1 , Qinghao Meng1 , Qichao Tian1 , Shao-Chun Li1,2 , Xiaoxiang Xi1,2 , Can Wang1,2* , and Yi Zhang1,2*
1 National Laboratory of Solid State Microstructure, School of Physics, Nanjing University, Nanjing 210093, China2 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract :Understanding the interplay between superconductivity and charge-density wave (CDW) in NbSe$_{2}$ is vital for both fundamental physics and future device applications. Here, combining scanning tunneling microscopy, angle-resolved photoemission spectroscopy and Raman spectroscopy, we study the CDW phase in the monolayer NbSe$_{2}$ films grown on various substrates of bilayer graphene (BLG), SrTiO$_{3}$(111), and Al$_{2}$O$_{3}$(0001). It is found that the two stable CDW states of monolayer NbSe$_{2}$ can coexist on NbSe$_{2}$/BLG surface at liquid-nitrogen temperature. For the NbSe$_{2}$/SrTiO$_{3}$(111) sample, the unidirectional CDW regions own the kinks at $\pm 41$ meV and a wider gap at 4.2 K. It is revealed that the charge transfer from the substrates to the grown films will influence the configurations of the Fermi surface, and induce a 130 meV lift-up of the Fermi level with a shrink of the Fermi pockets in NbSe$_{2}$/SrTiO$_{3}$(111) compared with the NbSe$_{2}$/BLG. Combining the temperature-dependent Raman experiments, we suggest that the electron-phonon coupling in monolayer NbSe$_{2}$ dominates its CDW phase transition.
收稿日期: 2021-06-25
Editors Suggestion
出版日期: 2021-09-28
:
71.45.Lr
(Charge-density-wave systems)
74.25.Jb
(Electronic structure (photoemission, etc.))
79.60.-i
(Photoemission and photoelectron spectra)
68.37.Ef
(Scanning tunneling microscopy (including chemistry induced with STM))
引用本文:
. [J]. 中国物理快报, 2021, 38(10): 107101-.
Xuedong Xie, Dongjing Lin, Li Zhu, Qiyuan Li, Junyu Zong, Wang Chen, Qinghao Meng, Qichao Tian, Shao-Chun Li, Xiaoxiang Xi, Can Wang, and Yi Zhang. Charge Density Wave and Electron-Phonon Interaction in Epitaxial Monolayer NbSe$_{2}$ Films. Chin. Phys. Lett., 2021, 38(10): 107101-.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/38/10/107101
或
https://cpl.iphy.ac.cn/CN/Y2021/V38/I10/107101
[1] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, and Kis A 2017 Nat. Rev. Mater. 2 17033
[2] Barhoumi M, Lazaar K, and Said M 2018 Physica E 104 155
[3] Chhowalla M, Voiry D, Yang J, Shin H S, and Loh K P 2015 MRS Bull. 40 585
[4] Datta I, Chae S H, Bhatt G R, Tadayon M A, Li B, Yu Y, Park C, Park J, Cao L, Basov D et al. 2020 Nat. Photon. 14 256
[5] Mak K F and Shan J 2016 Nat. Photon. 10 216
[6] Ponraj J S, Xu Z Q, Dhanabalan S C, Mu H, Wang Y, Yuan J, Li P, Thakur S, Ashrafi M, Mccoubrey K et al. 2016 Nanotechnology 27 462001
[7] Li X and Wu X 2016 Wiley Interdiscip. Rev.: Comput. Mol. Sci. 6 441
[8] Feng Y P, Shen L, Yang M, Wang A, Zeng M, Wu Q, Chintalapati S, and Chang C R 2017 Wiley Interdiscip. Rev.: Comput. Mol. Sci. 7 e1313
[9] Zhu X, Cao Y, Zhang J, Plummer E, and Guo J 2015 Proc. Natl. Acad. Sci. USA 112 2367
[10] Boubeche M, Yu J, Chushan L, Huichao W, Zeng L, He Y, Wang X, Su W, Wang M, Yao D X et al. 2021 Chin. Phys. Lett. 38 037401
[11] Borisenko S, Kordyuk A, Zabolotnyy V, Inosov D, Evtushinsky D, Büchner B, Yaresko A, Varykhalov A, Follath R, Eberhardt W et al. 2009 Phys. Rev. Lett. 102 166402
[12] Xi X, Zhao L, Wang Z, Berger H, Forró L, Shan J, and Mak K F 2015 Nat. Nanotechnol. 10 765
[13] Peierls R E and Roberts L D 1956 Phys. Today 9 29
[14] Boriack M and Overhauser A 1977 Phys. Rev. B 15 2847
[15] Pouget J P 2016 C. R. Phys. 17 332
[16] Choi J H and Cho J H 2006 J. Am. Chem. Soc. 128 11340
[17] Weber F, Rosenkranz S, Castellan J P, Osborn R, Hott R, Heid R, Bohnen K P, Egami T, Said A, and Reznik D 2011 Phys. Rev. Lett. 107 107403
[18] Divilov S, Wan W, Dreher P, Bölen E, Sánchez-Portal D, Ugeda M M, and Ynduráin F 2021 J. Phys.: Condens. Matter 33 295804
[19] Hu T, Bao H, Liu S, Liu X, Ma D, Ma F, and Xu K 2017 Carbon 120 219
[20] Chen W, Xie X, Zong J, Chen T, Lin D, Yu F, Jin S, Zhou L, Zou J, Sun J et al. 2019 Sci. Rep. 9 2685
[21] Xie X, Ding Y, Zong J, Chen W, Zou J, Zhang H, Wang C, and Zhang Y 2020 Appl. Phys. Lett. 116 193101
[22] Guster B, Rubio-Verdú C, Robles R, Zaldı́var J, Dreher P, Pruneda M, Silva-Guillén J, Choi D J, Pascual J I, Ugeda M M et al. 2019 Nano Lett. 19 3027
[23] Gye G, Oh E, and Yeom H W 2019 Phys. Rev. Lett. 122 016403
[24] Chen W, Hu M, Zong J, Xie X, Meng Q, Yu F, Wang L, Ren W, Chen A, Liu G et al. 2021 Adv. Mater. 33 2004930
[25] Soumyanarayanan A, Yee M M, He Y, Van Wezel J, Rahn D J, Rossnagel K, Hudson E, Norman M R, and Hoffman J E 2013 Proc. Natl. Acad. Sci. USA 110 1623
[26] Flicker F and Van Wezel J 2015 Nat. Commun. 6 7034
[27] Rossnagel K, Seifarth O, Kipp L, Skibowski M, Voß D, Krüger P, Mazur A, and Pollmann J 2001 Phys. Rev. B 64 235119
[28] Johannes M, Mazin I, and Howells C 2006 Phys. Rev. B 73 205102
[29] Wilson J, Di Salvo F, and Mahajan S 1974 Phys. Rev. Lett. 32 882
[30] Feng Y, Wang J, Jaramillo R, Van Wezel J, Haravifard S, Srajer G, Liu Y, Xu Z A, Littlewood P, and Rosenbaum T 2012 Proc. Natl. Acad. Sci. USA 109 7224
[31] Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y, Ruan W, Ojeda-Aristizabal C, Ryu H, Edmonds M T, Tsai H Z et al. 2016 Nat. Phys. 12 92
[32] Yokoya T, Kiss T, Chainani A, Shin S, Nohara M, and Takagi H 2001 Science 294 2518
[33] Weber F, Hott R, Heid R, Lev L, Caputo M, Schmitt T, and Strocov V 2018 Phys. Rev. B 97 235122
[34] Burton J, Sun L, Pophristic M, Lukacs S, Long F, Feng Z, and Ferguson I 1998 J. Appl. Phys. 84 6268
[35] Brun C, Cren T, and Roditchev D 2017 Supercond. Sci. Technol. 30 013003
[36] Wu Q, Zhou H, Wu Y, Hu L, Ni S, Tian Y, Sun F, Zhou F, Dong X, Zhao Z et al. 2020 Chin. Phys. Lett. 37 097802
[1]
. [J]. 中国物理快报, 2023, 40(5): 57101-057101.
[2]
. [J]. 中国物理快报, 2021, 38(7): 77402-077402.
[3]
. [J]. 中国物理快报, 2021, 38(3): 37403-.
[4]
. [J]. 中国物理快报, 2018, 35(9): 97102-.
[5]
. [J]. 中国物理快报, 2018, 35(7): 77104-.
[6]
. [J]. 中国物理快报, 2017, 34(8): 86101-.
[7]
. [J]. 中国物理快报, 2017, 34(7): 77403-.
[8]
. [J]. 中国物理快报, 2016, 33(02): 26802-026802.
[9]
. [J]. 中国物理快报, 2015, 32(11): 117401-117401.
[10]
. [J]. 中国物理快报, 2015, 32(08): 87101-087101.
[11]
. [J]. 中国物理快报, 2015, 32(07): 77203-077203.
[12]
. [J]. 中国物理快报, 2014, 31(07): 77203-077203.
[13]
. [J]. 中国物理快报, 2014, 31(07): 77401-077401.
[14]
WANG Qing-Bo;XU Xiang-Fan;TAO Qian;WANG Hong-Tao;XU Zhu-An. Metal--Insulator Transition in Ca-Doped Sr14-x Cax Cu24 O41 Systems Probed by Thermopower Measurements [J]. 中国物理快报, 2008, 25(5): 1857-1860.
[15]
LI Da-Hua;XIONG Rui;WANG Jun-Feng;LI Chang-Zhen;YIN Di;YI Fan;TANG Wu-Feng;SHI Jing;. The Second Threshold Field of Charge-Density-Wave Conductor Rb0.3 MoO3 in High Temperature Range [J]. 中国物理快报, 2005, 22(5): 1210-1213.