Two Superconducting Phases and Their Characteristics in Layered BaTi2 (Sb1?x Bix )2 O with x =0.16
WU Yue, DONG Xiao-Li** , MA Ming-Wei, YANG Huai-Xin, ZHANG Chao, ZHOU Fang, ZHOU Xing-Jiang, ZHAO Zhong-Xian**
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
Abstract :Two correlated superconducting phases are identified in the layered superconductor BaTi2 (Sb1?x Bix )2 O (x =0.16), with the superconducting transition temperatures of TC =6 K (the high TC phase) and 3.4 K (the low TC Phase), respectively. The 6 K superconducting phase appears first in the as-prepared sample and can decay into the low TC phase by exposure to an ambient atmosphere for a certain duration. Specially, the high TC phase can reappear from the decayed sample with the low TC phase by vacuum annealing. It is also found that the CDW/SDW order occurs only with the 6 K superconducting phase. These notable features and alteration of the superconductivity due to the post-processing and external pressure can be explained by the scenario of electronic phase separation.
出版日期: 2014-06-30
:
74.81.-g
(Inhomogeneous superconductors and superconducting systems, including electronic inhomogeneities)
74.70.Xa
(Pnictides and chalcogenides)
74.25.-q
(Properties of superconductors)
71.45.Lr
(Charge-density-wave systems)
引用本文:
. [J]. 中国物理快报, 2014, 31(07): 77401-077401.
WU Yue, DONG Xiao-Li, MA Ming-Wei, YANG Huai-Xin, ZHANG Chao, ZHOU Fang, ZHOU Xing-Jiang, ZHAO Zhong-Xian. Two Superconducting Phases and Their Characteristics in Layered BaTi2 (Sb1?x Bix )2 O with x =0.16. Chin. Phys. Lett., 2014, 31(07): 77401-077401.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/31/7/077401
或
https://cpl.iphy.ac.cn/CN/Y2014/V31/I07/77401
[1] Adam A and Schuster H U 1990 Anorg. Allg. Chem. 584 150 [2] Axtell E A, Ozawa T, Kauzlarich S M and Singh R R P 1997 J. Solid State Chem. 134 423 [3] Wang X F, Yan Y J, Ying J J, Li J Q, Zhang M, Xu N and Chen X H 2010 J. Phys.: Condens. Matter 22 075702 [4] Singh D J 2012 New J. Phys. 14 123003 [5] Shi Y G, Wang H P, Zhang X, Wang W D, Huang Y and Wang N L 2013 Phys. Rev. B 88 144513 [6] Yan X W and Lu Z Y 2013 J. Phys.: Condens. Matter 25 365501 [7] Doan P, Gooch M, Tang Z J, Lorenz B, Moller A, Tapp J, Chu C W and Guloy A M 2012 J. Am. Chem. Soc. 134 16520 [8] Yajima T, Nakano K, Takeiri F, Ono T, Hosokoshi Y, Matsushita Y, Hester J, Kobayashi Y and Kageyama H 2012 J. Phys. Soc. Jpn. 81 103706 [9] Gooch M, Doan P, Lorenz B, Tang Z J, Guloy A M and Chu C W 2013 Supercond. Sci. Technol. 26 125011 [10] Kitagawa S, Ishida K, Nakano K, Yajima T and Kageyama H 2013 Phys. Rev. B 87 060510 [11] Nakano K, Yajima T, Takeiri F, Green M A, Hester J, Kobayashi Y and Kageyama H 2013 J. Phys. Soc. Jpn. 82 074707 [12] Pachmayr U and Johrendt D 2014 Solid State Sci. 28 31 [13] Suetin D V and Ivanovskii A L 2013 J. Alloys Compd. 564 117 [14] Von Rohr F, Nesper R and Schilling A 2014 Phys. Rev. B 89 094505 Von Rohr F, Schilling A, Nesper R, Baines C and Bendele M 2013 Phys. Rev. B 88 140501 [15] Yajima T, Nakano K, Takeiri F, Hester J, Yamamoto T, Kobayashi Y, Tsuji N, Kim J, Fujiwara A and Kageyama H 2013 J. Phys. Soc. Jpn. 82 013703 [16] Yajima T, Nakano K, Takeiri F, Nozaki Y, Kobayashi Y and Kageyama H 2013 J. Phys. Soc. Jpn. 82 033705 [17] Zhai H F, Jiao W H, Sun Y L, Bao J K, Jiang H, Yang X J, Tang Z T, Tao Q, Xu X F, Li Y K, Cao C, Dai J H, Xu Z A and Cao G H 2013 Phys. Rev. B 87 100502 [18] Dong X L, Lu W, Yang J, Yi W, Li Z C, Zhang C, Ren Z A, Che G C, Sun L L, Zhou F, Zhou X J and Zhao Z X 2010 Phys. Rev. B 82 212506 [19] Brandt N B and Ginzburg N I 1965 Sov. Phys. Usp. 8 202 [20] Vi P, Molin V N, Vasin O I, Pa S, Stenin S I and Batyev E G 1974 Zh. Eksp. Teor. Fiz. [Sov. Phys. JETP] 66 996 [21] Matthias B T and Hulm J K 1952 Phys. Rev. 87 799 [22] Saparov B and Sefat A S 2013 J. Solid State Chem. 204 32 [23] Tomita T, Hamlin J, Schilling J, Hinks D and Jorgensen J 2001 Phys. Rev. B 64 092505 [24] Lorenz B, Li Z G, Honma T and Hor P H 2002 Phys. Rev. B 65 144522 [25] Zhao Z X and Dong X L 1998 NNATO Advanced Study Institute on the Gap Symmetry and Fluctuations in High-T(c) Superconductors (Cargese France 1–13 September 1997) vol 371 p 171 [26] Dong X L, Dong Z F, Zhao B R, Zhao Z X, Duan X F, Peng L M, Huang W W, Xu B, Zhang Y Z, Guo S Q, Zhao L H and Li L 1998 Phys. Rev. Lett. 80 2701
[1]
. [J]. 中国物理快报, 2018, 35(5): 57402-57402.
[2]
. [J]. 中国物理快报, 2016, 33(05): 58502-058502.
[3]
TIAN Li-Jun;**;QIN Li-Guo;ZHANG Hong-Biao
. Entanglement of Two-Superconducting-Qubit System Coupled with a Fixed Capacitor [J]. 中国物理快报, 2011, 28(5): 50308-050308.
[4]
FENG Zhi-Fang;FENG Shuai;REN Kun;LI Zhi-Yuan;CHENG Bing-Ying;ZHANG Dao-Zhong. Complete Band-Gap in Two-Dimensional Quasiperiod Photonic Crystals with Hollow Cylinders [J]. 中国物理快报, 2005, 22(8): 1941-1943.
[5]
ZHOU Yuan;LI Jun;GONG Chang-De;. Possibility of Coexistence of Ferromagnetism and Superconductivity in an Anisotropic Quasi-Two-Dimensional System [J]. 中国物理快报, 2004, 21(9): 1805-1807.
[6]
WANG Yi-Quan;FENG Zhi-Fang;HU Xiao-Yong;CHENG Bing-Ying;ZHANG Dao-Zhong. Band Gaps of an Amorphous Photonic Materials [J]. 中国物理快报, 2004, 21(2): 324-325.
[7]
LI Liang;XIE Yi-Cheng;WANG Yi-Quan;HU Xiao-Yong;FENG Zhi-Fang;CHENG Bing-Ying. Absolute Gap of Two-Dimensional Fractal Photonic Structure [J]. 中国物理快报, 2003, 20(10): 1767-1769.