Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure
Meng-Yao Yan , Bi-Jun Xu** , Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu
School of Sciences, Zhejiang University of Science and Technology, Hangzhou 310023, China
Abstract :Equipped with multiple and unique features, a terahertz absorber exhibits great potential for use in the development of communication, military, and other fields where achieving perfect broadband absorption has always been a challenge. We present a metamaterial terahertz (THz) absorber comprising a cross-dipole patch, four symmetric square patches and an asymmetric open-loop patch with a good perfect absorption rate for TE and TM polarizations. The average absorption of more than 96% occurs in the frequency range from 2.4 THz to 3.8 THz, in which the absorptance peak can reach 99.9%, as indicated by simulated results. Our design has broad potential applications in THz couplers, as well as in fields like biology and security.
收稿日期: 2020-02-24
出版日期: 2020-05-26
PACS:
78.67.Pt
(Multilayers; superlattices; photonic structures; metamaterials)
42.25.Bs
(Wave propagation, transmission and absorption)
42.70.-a
(Optical materials)
78.20.Ci
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
[1] Koenig S, Lopez-Diaz D, Antes J et al 2013 Nat. Photon. 7 977
[2] Kurt H, Citrin D 2005 Appl. Phys. Lett. 87 041108
[3] Watts C M, Liu X, Padilla W J 2012 Adv. Mater. 24 OP181
[4] Fan S, Li T, Zhou J et al 2017 AIP Adv. 7 115202
[5] Tao H, Landy N I, Bingham C M et al 2008 Opt. Express 16 7181
[6] Chen H T 2012 Opt. Express 20 7165
[7] Smith D R, Padilla W J, Vier D et al 2000 Phys. Rev. Lett. 84 4184
[8] Zhang B, Lv L, He T et al 2015 Appl. Phys. Lett. 107 093301
[9] Kapoor A, Singh G 2000 J. Lightwave Technol. 18 849
[10] Feng L, Xu Y L, Fegadolli W S et al 2013 Nat. Mater. 12 108
[11] Grady N K, Heyes J E, Chowdhury D R et al 2013 Science 340 1304
[12] Yachmenev A, Lavrukhin D, Glinskiy I et al 2019 Opt. Eng. 59 061608
[13] Li W, Coppens Z J, Besteiro L V et al 2015 Nat. Commun. 6 8379
[14] Cong L, Pitchappa P, Lee C et al 2017 Adv. Mater. 29 1700733
[15] Duan G, Schalch J, Zhao X et al 2018 Opt. Express 26 2242
[16] Landy N I, Sajuyigbe S, Mock J J et al 2008 Phys. Rev. Lett. 100 207402
[17] Liu N, Mesch M, Weiss T et al 2010 Nano Lett. 10 2342
[18] Wang M, Huang S Y, Hu R et al 2019 Chin. Phys. B 28 087804
[19] Low T, Avouris P 2014 ACS Nano 8 1086
[20] Tang X P, Yang Z Q, Shi Z J, Lan F 2016 Chin. Phys. Lett. 33 088401
[21] Wang B X, Wang G Z 2018 Plasmonics 13 123
[22] Islam M R, Kabir M F, Talha K M A et al 2020 Opt. Eng. 59 016113
[23] Paulish A, Gusachenko A, Morozov A et al 2019 Opt. Eng. 59 061612
[24] Fan C Z, Tian Y C, Ren P W et al 2019 Chin. Phys. B 28 076105
[25] Liu M, Yang Q, Rifat A A et al 2019 Adv. Opt. Mater. 7 1900736
[26] Duan G, Schalch J, Zhao X et al 2019 Sens. Actuators A 287 21
[27] Daraei O M, Goudarzi K, Bemani M 2020 Opt. Laser Technol. 122 105853
[28] Zhang H, Ling F, Wang H et al 2020 Opt. Commun. 463 125394
[29] Zhong Q, Wang T, Jiang X et al 2020 Opt. Commun. 458 124637
[30] Yan M Y, Sun Z C, Wu B R et al 2020 Front. Phys. 8 46
[31] Yang P, Qin J, Schalch J, Xu J, Han T C et al 2019 Acta Phys. Sin. 68 087802 (in Chinese)
[32] Soheilifar, M R 2019 Optik 182 702
[33] Hao S B, Zhang L Z, Ma Y Y, Chen M Y et al 2019 Chin. Phys. Lett. 36 124205
[34] Wang D T, Wang X C, Zhang X, Yuan H R et al 2020 Chin. Phys. Lett. 37 045201
[35] Li S H, Li J S 2019 Chin. Phys. B 28 094210
[36] Xie Y M, Liu C Y, Ding Z J et al 2016 Chin. Phys. Lett. 33 094208
[37] Zhao J, Zhang J, Qin C et al 2016 Chin. Phys. Lett. 33 027801
[38] Wang C F, Li Q S, Wang J S et al 2016 Chin. Phys. Lett. 33 076802
[39] Wang L, Song W, Hu W, Li G, Luo X et al 2019 Chin. Phys. B 28 018503
[40] Meng X Q, Chen S L, Fang Y Z, Kou J L 2019 Chin. Phys. B 28 078101
[41] Wang W M, Zhang L L, Li Y T, Sheng Z M, Zhang J 2018 Acta Phys. Sin. 67 124202 (in Chinese)
[42] Liu C, Ooi Y K, Islam S, Xing H, Jena D and Zhang J 2018 Appl. Phys. Lett. 112 011101
[43] Lu X H, Jing C B, Wang L W et al 2019 Chin. Phys. Lett. 36 098501
[44] Cheng X T and Liang X G 2017 Chin. Phys. B 26 120505
[45] Xia G, Kou W, Yang L and Du Y C 2017 Chin. Phys. B 26 104403
[46] Jiang S L, Li X F, Su R F, Jia X Q et al 2017 Chin. Phys. Lett. 34 090701
[1]
. [J]. 中国物理快报, 2020, 37(6): 67802-.
[2]
. [J]. 中国物理快报, 2020, 37(5): 57801-.
[3]
. [J]. 中国物理快报, 2019, 36(1): 17801-.
[4]
. [J]. 中国物理快报, 2018, 35(3): 38102-.
[5]
. [J]. 中国物理快报, 2017, 34(10): 107801-.
[6]
. [J]. 中国物理快报, 2017, 34(9): 97701-.
[7]
. [J]. 中国物理快报, 2016, 33(10): 107804-107804.
[8]
. [J]. 中国物理快报, 2016, 33(09): 94208-094208.
[9]
. [J]. 中国物理快报, 2016, 33(07): 76802-076802.
[10]
. [J]. 中国物理快报, 2016, 33(02): 27801-027801.
[11]
. [J]. 中国物理快报, 2015, 32(06): 68101-068101.
[12]
. [J]. 中国物理快报, 2014, 31(07): 77801-077801.
[13]
. [J]. 中国物理快报, 2014, 31(06): 67803-067803.
[14]
. [J]. 中国物理快报, 2014, 31(04): 47302-047302.
[15]
. [J]. 中国物理快报, 2014, 31(1): 18101-018101.