Structural Transition from Ordered to Disordered of BeZnO$_2$ Alloy
Li-Xia Qin1†,** , Han-Pu Liang1† , Rong-Li Jiang2
1 School of Materials and Physics, China University of Mining and Technology, Xuzhou 2211162 School of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116
Abstract :Employing Monte Carlo simulations based on the cluster expansion, the special quasi-random structures and first-principles calculations, we systematically investigate the structure transition of BeZnO$_2$ alloys from the ordered to the disordered phase driven by the increased synthesis temperature, together with the solid-state phase diagram. It is found that by controlling the ordering parameter at the mixed sublattice, the band structure can vary continuously from a wide direct band gap of 4.61 eV for the fully ordered structure to a relatively narrow direct band gap of 3.60 eV for the fully disordered structure. Therefore, a better optical performance could be achieved simply by controlling the synthesis temperature, which determines the ordering parameters and thus the band gaps.
收稿日期: 2019-12-16
出版日期: 2020-04-25
:
71.23.-k
(Electronic structure of disordered solids)
78.30.Fs
(III-V and II-VI semiconductors)
64.60.Cn
(Order-disorder transformations)
[1] Sun J, Wang H, He J and Tian Y 2005 Phys. Rev. B 71 125132 [2] Duan Y, Qin L, Tang G and Shi L 2008 Eur. Phys. J. B 66 201 [3] Wu Y, Yu T and Shen Z 2010 J. Appl. Phys. 108 071301 [4] Ryu Y, Lubguban J, Lee T, White H, Jeong T, Youn C and Kim B 2007 Appl. Phys. Lett. 90 131115 [5] Ryu Y, Lee T, Lubguban J, White H, Kim B, Park Y and Youn C 2006 Appl. Phys. Lett. 88 241108 [6] Shi H and Duan Y 2008 Eur. Phys. J. B 66 439 [7] Duan Y, Shi H and Qin L 2008 Phys. Lett. A 372 2930 [8] Dong L and Alpay S 2012 J. Appl. Phys. 111 113714 [9] Su L, Zhu Y, Xu X, Chen H, Tang Z and Fang X 2018 J. Mater. Chem. C 6 7776 [10] Elhamra F, Lakel S and Meradji H 2016 Optik 127 1754 [11] Duan Y, Qin L, Shi L, Tang G and Shi H 2012 Appl. Phys. Lett. 100 022104 [12] Duan Y, Qin L and Liu H 2016 J. Phys.: Condens. Matter 28 205403 [13] Zhao B, Duan Y, Shi H, Qin L, Shi L and Tang G 2012 Chin. Phys. Lett. 29 117104 [14] Luo J, Lin J, Zhang L, Guo X and Zhu Y 2019 Chin. Phys. Lett. 36 057303 [15] Ma J, Deng H, Luo J and Wei S H 2014 Phys. Rev. B 90 115201 [16] Park J, Yang J, Kanevce A, Choi S, Repins I and Wei S H 2015 Phys. Rev. B 91 075204 [17] Yong D, He H, Su L, Zhu Y, Tang Z, Zeng X and Pan B 2015 Nanoscale 7 9852 [18] Liu W, Liang H, Duan Y and Wu Z 2019 Phys. Rev. Mater. 3 125405 [19] Yang J, Zhang P and Wei S H 2018 J. Phys. Chem. Lett. 9 31 [20] De Fontaine D 1994 Solid State Phys. 47 33 [21] Ducastelle F 1994 Order and Phase Stability in Alloys (New York: Elsevier) [22] Wei S H, Ferreira L, Bernard J and Zunger A 1990 Phys. Rev. B 42 9622 [23] van de Walle A, Asta M D and Ceder G 2002 Calphad 26 539 [24] van de Walle A, Tiwary P, de Jong M M, Olmsted D L, Asta M D, Dick A, Shin D, Wang Y, Chen L and Liu Z 2013 Calphad 42 13 [25] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 [26] Kohn W and Sham L 1965 Phys. Rev. 140 A1133 [27] Blöchl P E 1994 Phys. Rev. B 50 17953 [28] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [29] Kresse G and Hafner J 1993 Phys. Rev. B 47 558 [30] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251 [31] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [32] Heyd J, Scuseria G and Ernzerhof M 2003 J. Chem. Phys. 118 8207 [33] Chaput L, Togo A, Tanaka I and Hug G 2011 Phys. Rev. B 84 094302 [34] Jaffe J and Zunger A 1983 Phys. Rev. B 28 5822 [35] Jaffe J and Zunger A 1984 Phys. Rev. B 29 1882 [36] Gao J, Duan Y, Zhao C, Liu W, Dong H, Zhang D and Dong H 2019 J. Mater. Chem. C 7 1246 [37] Zunger A, Wei S H, Ferreira L and Bernard J 1990 Phys. Rev. Lett. 65 353 [38] Wei S H, Ferreira L and Zunger A 1990 Phys. Rev. B 41 8240 [39] van de Walle A and Ceder G 2002 J. Phase Equilib. 23 348 [40] Wei S H and Zunger A 1998 Appl. Phys. Lett. 72 2011 [41] Wei S H and Zunger A 1995 J. Appl. Phys. 78 3846
[1]
. [J]. 中国物理快报, 2022, 39(10): 107801-.
[2]
DING Zong-Ling;XING Huai-Zhong;XU Sheng-Lan;HUANG Yan;CHENXiao-Shuang. First-Principles Study of Electronic Properties in PbS(100) with Vacancy Defect [J]. 中国物理快报, 2007, 24(11): 3218-3221.
[3]
ZHONG Yan-Ming;XIONG Shi-Jie. Nonadiabatic Geometric Phase and Induced Persistent Current in Mesoscopic Square Circuit with Tilted Magnetic Field at Edges [J]. 中国物理快报, 2007, 24(9): 2650-2653.
[4]
SONG Yi-Pu; XU Hui;LUO Feng. Direct Current Hopping Conductivity in One-Dimensional Nanometer Systems [J]. 中国物理快报, 2003, 20(2): 277-280.
[5]
YANG Kai-Hua;SONG Bo;WANG Yu-Peng;HAN Ru-Shan. D-Wave Kondo Problem in a Square Tight-Bounding Lattice
[J]. 中国物理快报, 2002, 19(1): 111-113.
[6]
LIU De-Sheng;WANG Lu-Xia;WEI Jian-Hua;ZHENG Bin;XIE Shi-Jie;HAN Sheng-Hao;MEI Liang-Mo. Electronic States in Quasi-one-Dimensional Copolymeric Sandwich
Structures [J]. 中国物理快报, 2001, 18(12): 1644-1647.
[7]
CHEN Zhi-Qian;ZHENG Ren-Rong;. Statistic Ensemble Theory of Small Superconducting Grains [J]. 中国物理快报, 2001, 18(4): 592-594.
[8]
CHEN Zhi-Qian;ZHENG Ren-Rong;. Breakdown of Superconductivity in Small Metallic Grains [J]. 中国物理快报, 2000, 17(10): 762-764.
[9]
LU Yi-Jun;GAO Yu-Lin;ZHENG Jian-Sheng. Investigation on Photoluminescence of Ordered Structure in the (AIx Gal-x )0.51 In0.49 P(x = 0.29) Alloys [J]. 中国物理快报, 2000, 17(10): 768-769.