| [1] | Huang J P 2020 Theoretical Thermotics: Transformation Thermotics and Extended Theories for Thermal Metamaterials (Berlin: Springer) |
| [2] | Fan C Z, Gao Y and Huang J P 2008 Appl. Phys. Lett. 92 251907 | Shaped graded materials with an apparent negative thermal conductivity
| [3] | Chen T Y, Weng C N and Chen J S 2008 Appl. Phys. Lett. 93 114103 | Cloak for curvilinearly anisotropic media in conduction
| [4] | Guenneau S, Petiteau D, Zerrad M, Amra C and Puvirajesinghe T 2015 AIP Adv. 5 053404 | Transformed Fourier and Fick equations for the control of heat and mass diffusion
| [5] | Dai G L, Shang J and Huang J P 2018 Phys. Rev. E 97 022129 | Theory of transformation thermal convection for creeping flow in porous media: Cloaking, concentrating, and camouflage
| [6] | Li Y, Zhu K J, Peng Y G, Li W, Yang T Z, Xu H X, Chen H, Zhu X F, Fan S H and Qiu C W 2019 Nat. Mater. 18 48 | Thermal meta-device in analogue of zero-index photonics
| [7] | Yang F B, Xu L J and Huang J P 2019 ES Energy & Environ. 6 45 | Thermal Illusion of Porous Media with Convection-Diffusion Process: Transparency, Concentrating, and Cloaking
| [8] | Yeung W S, Mai V P and Yang R J 2020 Phys. Rev. Appl. 13 064030 | Cloaking: Controlling Thermal and Hydrodynamic Fields Simultaneously
| [9] | Xu L J and Huang J P 2020 Sci. Chin. Phys. Mech. & Astron. 63 228711 | Chameleonlike metashells in microfluidics: A passive approach to adaptive responses
| [10] | Li Y, Bai X, Yang T Z, Luo H L and Qiu C W 2018 Nat. Commun. 9 273 | Structured thermal surface for radiative camouflage
| [11] | Xu L J and Huang J P 2019 Phys. Rev. Appl. 12 044048 | Metamaterials for Manipulating Thermal Radiation: Transparency, Cloak, and Expander
| [12] | Peng Y G, Li Y, Cao P C, Zhu X F and Qiu C W 2020 Adv. Funct. Mater. 30 2002061 | 3D Printed Meta‐Helmet for Wide‐Angle Thermal Camouflages
| [13] | Xu L J, Dai G L and Huang J P 2020 Phys. Rev. Appl. 13 024063 | Transformation Multithermotics: Controlling Radiation and Conduction Simultaneously
| [14] | Xu L J, Yang S, Dai G L and Huang J P 2020 ES Energy & Environ. 7 65 | Transformation Omnithermotics: Simultaneous Manipulation of Three Basic Modes of Heat Transfer
| [15] | Wang J, Yang F B, Xu L J and Huang J P 2020 Phys. Rev. Appl. 14 014008 | Omnithermal Restructurable Metasurfaces for Both Infrared-Light Illusion and Visible-Light Similarity
| [16] | Yang S, Xu L J, Dai G L and Huang J P 2020 J. Appl. Phys. 128 095102 | Omnithermal metamaterials switchable between transparency and cloaking
| [17] | Farhat M, Chen P Y, Bagci H, Amra C, Guenneau S and Alù A 2015 Sci. Rep. 5 9876 | Thermal invisibility based on scattering cancellation and mantle cloaking
| [18] | Farhat M, Guenneau S, Chen P Y, Alù A and Salama K N 2019 Phys. Rev. Appl. 11 044089 | Scattering Cancellation-Based Cloaking for the Maxwell-Cattaneo Heat Waves
| [19] | Xu L J and Huang J P 2020 Int. J. Heat Mass Transfer 159 120133 | Controlling thermal waves with transformation complex thermotics
| [20] | Vasquez F G, Milton G W and Onofrei D 2009 Phys. Rev. Lett. 103 073901 | Active Exterior Cloaking for the 2D Laplace and Helmholtz Equations
| [21] | Selvanayagam M and Eleftheriades G V 2013 Phys. Rev. X 3 041011 | Experimental Demonstration of Active Electromagnetic Cloaking
| [22] | Kord A, Sounas D L and Alù A 2018 Phys. Rev. Appl. 10 054040 | Active Microwave Cloaking Using Parity-Time-Symmetric Satellites
| [23] | Vasquez F G, Milton G W and Onofrei D 2011 Wave Motion 48 515 | Exterior cloaking with active sources in two dimensional acoustics
| [24] | Ning L, Wang Y Z and Wang Y S 2020 Int. J. Solids Struct. 202 126 | Active control cloak of the elastic wave metamaterial
| [25] | Kerferd B, Eggler D, Karimi M and Kessissoglou N 2020 J. Sound Vib. 479 115400 | Active acoustic cloaking of cylindrical shells in low Mach number flow
| [26] | Urzhumov Y A and Smith D R 2012 Phys. Rev. E 86 056313 | Flow stabilization with active hydrodynamic cloaks
| [27] | Culver D and Urzhumov Y 2017 Phys. Rev. E 96 063107 | Forced underwater laminar flows with active magnetohydrodynamic metamaterials
| [28] | Ma Q, Mei Z L, Zhu S K, Jin T Y and Cui T J 2013 Phys. Rev. Lett. 111 173901 | Experiments on Active Cloaking and Illusion for Laplace Equation
| [29] | Lan C W, Bi K, Gao Z H, Li B and Zhou J 2016 Appl. Phys. Lett. 109 201903 | Achieving bifunctional cloak via combination of passive and active schemes
| [30] | Chen T H, Zheng B, Yang Y H, Shen L, Wang Z J, Gao F, Li E P, Luo Y, Cui T J and Chen H S 2019 Light: Sci. & Appl. 8 30 | Direct current remote cloak for arbitrary objects
| [31] | Mach-Batlle R, Parra A, Laut S, Del-Valle N, Navau C and Sanchez A 2018 Phys. Rev. Appl. 9 034007 | Magnetic Illusion: Transforming a Magnetic Object into Another Object by Negative Permeability
| [32] | Jiang W, Ma Y G and He S L 2018 Phys. Rev. Appl. 9 054041 | Static Magnetic Cloak without a Superconductor
| [33] | Dai X and Jiang J C 2020 AIP Adv. 10 025211 | Active magnetic cloaking with a dipole
| [34] | Nguyen D M, Xu H Y, Zhang Y M and Zhang B L 2015 Appl. Phys. Lett. 107 121901 | Active thermal cloak
| [35] | Guo J and Qu Z G 2018 Int. J. Heat Mass Transfer 127 1212 | Thermal cloak with adaptive heat source to proactively manipulate temperature field in heat conduction process
| [36] | Xu L J, Yang S and Huang J P 2019 Phys. Rev. E 100 062108 | Dipole-assisted thermotics: Experimental demonstration of dipole-driven thermal invisibility
| [37] | Xu L J, Yang S and Huang J P 2020 Europhys. Lett. 131 24002 | Effectively infinite thermal conductivity and zero-index thermal cloak
| [38] | Li Y, Peng Y G, Han L, Miri M A, Li W, Xiao M, Zhu X F, Zhao J L, Alù A, Fan S H and Qiu C W 2019 Science 364 170 | Anti–parity-time symmetry in diffusive systems
| [39] | Cao P C, Li Y, Peng Y G, Qiu C W and Zhu X F 2020 ES Energy & Environ. 7 48 |
| [40] | Xu L J and Huang J P 2020 Chin. Phys. Lett. 37 080502 | Negative Thermal Transport in Conduction and Advection
| [41] | Xu L J and Huang J P 2020 Appl. Phys. Lett. 117 011905 | Thermal convection-diffusion crystal for prohibition and modulation of wave-like temperature profiles
| [42] | Bear J and Corapcioglu M Y 1984 Fundamentals of Transport Phenomena in Porous Media (Berlin: Springer) |
| [43] | Urzhumov Y A and Smith D R 2011 Phys. Rev. Lett. 107 074501 | Fluid Flow Control with Transformation Media
| [44] | Park J, Youn J R and Song Y S 2019 Phys. Rev. Lett. 123 074502 | Hydrodynamic Metamaterial Cloak for Drag-Free Flow
| [45] | Park J, Youn J R and Song Y S 2019 Phys. Rev. Appl. 12 061002 | Fluid-Flow Rotator Based on Hydrodynamic Metamaterial
| [46] | Joseph D D and Preziosi L 1989 Rev. Mod. Phys. 61 41 | Heat waves
| [47] | Nie B D and Cao B Y 2019 Int. J. Heat Mass Transfer 135 974 | Three mathematical representations and an improved ADI method for hyperbolic heat conduction
| [48] | Gandolfi M, Benetti G, Glorieux C, Giannetti C and Banfi F 2019 Int. J. Heat Mass Transfer 143 118553 | Accessing temperature waves: A dispersion relation perspective
| [49] | Simoncelli M, Marzari N and Cepellotti A 2020 Phys. Rev. X 10 011019 | Generalization of Fourier’s Law into Viscous Heat Equations
| [50] | Domenico M D, Jou D and Sellitto A 2020 Int. J. Heat Mass Transfer 156 119888 | Nonlinear heat waves and some analogies with nonlinear optics
| [51] | Hu R, Iwamoto S, Feng L, Ju S H, Hu S Q, Ohnishi M, Nagai N, Hirakawa K and Shiomi J 2020 Phys. Rev. X 10 021050 | Machine-Learning-Optimized Aperiodic Superlattice Minimizes Coherent Phonon Heat Conduction
| [52] | Orth T, Netzelmann U and Pelzl J 1988 Appl. Phys. Lett. 53 1979 | Thermal wave imaging by photothermally modulated ferromagnetic resonance
| [53] | Busse G, Wu D and Karpen W 1992 J. Appl. Phys. 71 3962 | Thermal wave imaging with phase sensitive modulated thermography
| [54] | Mulaveesala R and Tuli S 2006 Appl. Phys. Lett. 89 191913 | Theory of frequency modulated thermal wave imaging for nondestructive subsurface defect detection
| [55] | Mulaveesala R and Tuli S 2008 AIP Conf. Proc. 1004 15 | Applications of Frequency Modulated Thermal Wave Imaging For Non-destructive Characterization
| [56] | Tuli S and Chatterjee K 2012 AIP Conf. Proc. 1430 523 | AIP Conference Proceedings
| [57] | Sha W, Zhao Y T, Gao L, Xiao M and Hu R 2020 J. Appl. Phys. 128 045106 | Illusion thermotics with topology optimization
| [58] | Hu R, Huang S Y, Wang M, Luo X B, Shiomi J and Qiu C W 2019 Adv. Mater. 31 1807849 | Encrypted Thermal Printing with Regionalization Transformation
| [59] | Hu R, Zhou S L, Li Y, Lei D Y, Luo X B and Qiu C W 2018 Adv. Mater. 30 1707237 | Illusion Thermotics
| [60] | Hu R, Huang S Y, Wang M, Zhou L L, Peng X Y and Luo X B 2018 Phys. Rev. Appl. 10 054032 | Binary Thermal Encoding by Energy Shielding and Harvesting Units