[1] | Stassi R, Cirio M and Nori F 2020 npj Quantum Inf. 6 67 | Scalable quantum computer with superconducting circuits in the ultrastrong coupling regime
[2] | Wang B N, Hu F, Yao H N and Wang C 2020 Sci. Rep. 10 7106 | Prime factorization algorithm based on parameter optimization of Ising model
[3] | Bruzewicz C D, Chiaverini J, Mcconnell R and Sage J M 2019 Appl. Phys. Rev. 6 021314 | Trapped-ion quantum computing: Progress and challenges
[4] | Grzesiak N, Blümel R, Beck K, Wright K, Chaplin V, Amini J M, Pisenti N C, Debnath S, Chen J S and Nam Y 2020 Nat. Commun. 11 2963 | Efficient arbitrary simultaneously entangling gates on a trapped-ion quantum computer
[5] | Yang B Y and Yang L 2020 Sci. Chin. Inf. Sci. 63 202501 | Effect on ion-trap quantum computers from the quantum nature of the driving field
[6] | Sheng C, He X D, Xu P, Guo R J, Wang K P, Xiong Z Y, Liu M, Wang J and Zhan M S 2018 Phys. Rev. Lett. 121 240501 | High-Fidelity Single-Qubit Gates on Neutral Atoms in a Two-Dimensional Magic-Intensity Optical Dipole Trap Array
[7] | Qiang X G, Zhou X Q, Wang J W, Wilkes C M, Thomas L, O'Gara S, Laurent K, Marshall G D, Raffaele S and Ralph T C 2018 Nat. Photon. 12 534 | Large-scale silicon quantum photonics implementing arbitrary two-qubit processing
[8] | Ji W T, Zhang L, Wang M Q, Zhang L, Guo Y H, Chai Z H, Rong X, Shi F Z, Liu X J, Wang Y and Du J F 2020 Phys. Rev. Lett. 125 020504 | Quantum Simulation for Three-Dimensional Chiral Topological Insulator
[9] | Zhang J F, Hegde S S and Suter D 2020 Phys. Rev. Lett. 125 030501 | Efficient Implementation of a Quantum Algorithm in a Single Nitrogen-Vacancy Center of Diamond
[10] | Cui J Y, Li J, Liu X M, Peng X H and Fu R Q 2018 J. Magn. Reson. 294 83 | Engineering spin Hamiltonians using multiple pulse sequences in solid state NMR spectroscopy
[11] | Xin T, Li Y S, Fan Y, Zhu X R, Zhang Y J, Nie X F, Li J, Liu Q H and Lu D W 2020 Phys. Rev. Lett. 125 090502 | Quantum Phases of Three-Dimensional Chiral Topological Insulators on a Spin Quantum Simulator
[12] | Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O'Brien J L 2010 Nature 464 45 | Quantum computers
[13] | Peng X H, Liao Z Y, Xu N Y, Qin G, Zhou X Y, Suter D and Du J F 2008 Phys. Rev. Lett. 101 220405 | Quantum Adiabatic Algorithm for Factorization and Its Experimental Implementation
[14] | Farhi E, Goldstone J, Gutmann S and Sipser M 2000 arXiv:quant-ph/0001106 | Quantum Computation by Adiabatic Evolution
[15] | Kato T 1950 J. Phys. Soc. Jpn. 5 435 | On the Adiabatic Theorem of Quantum Mechanics
[16] | Mizel A, Lidar D A and Mitchell M 2007 Phys. Rev. Lett. 99 070502 | Simple Proof of Equivalence between Adiabatic Quantum Computation and the Circuit Model
[17] | Yu H Y, Huang Y L and Wu B 2018 Chin. Phys. Lett. 35 110303 | Exact Equivalence between Quantum Adiabatic Algorithm and Quantum Circuit Algorithm
[18] | Xu N Y, Zhu J, Lu D W, Zhou X Y, Peng X H and Du J F 2012 Phys. Rev. Lett. 108 130501 | Quantum Factorization of 143 on a Dipolar-Coupling Nuclear Magnetic Resonance System
[19] | Wu B, Yu H Y and Wilczek F 2020 Phys. Rev. A 101 012318 | Quantum independent-set problem and non-Abelian adiabatic mixing
[20] | Peng W C, Wang B N, Hu F, Wang Y J, Fang X J, Chen X Y and Wang C 2019 Sci. Chin.-Phys. Mech. Astron. 62 1 | A unified study of continuous and discontinuous Galerkin methods
[21] | Childs A M, Farhi E and Preskill J 2001 Phys. Rev. A 65 012322 | Robustness of adiabatic quantum computation
[22] | Amin M H S 2008 Phys. Rev. Lett. 100 130503 | Effect of Local Minima on Adiabatic Quantum Optimization
[23] | Rezakhani A T, Abasto D F, Lidar D A and Zanardi P 2010 Phys. Rev. A 82 012321 | Intrinsic geometry of quantum adiabatic evolution and quantum phase transitions
[24] | Choi V 2010 arXiv:1004.2226v1 [quant-ph] | Adiabatic Quantum Algorithms for the NP-Complete Maximum-Weight Independent Set, Exact Cover and 3SAT Problems
[25] | Kay A 2015 Phys. Rev. A 92 062329 | Degree of quantum correlation required to speed up a computation
[26] | Campbell S and Deffner S 2017 Phys. Rev. Lett. 118 100601 | Trade-Off Between Speed and Cost in Shortcuts to Adiabaticity
[27] | Berry M V 2009 J. Phys. A 42 365303 | Transitionless quantum driving
[28] | Mustafa D and Stuart A R 2008 J. Chem. Phys. 129 154111 | On the consistency, extremal, and global properties of counterdiabatic fields
[29] | Orioli A, A P, S, Wildhagen H, Günter G, Berges J, Whitlock S and Weidemüller M 2018 Phys. Rev. Lett. 120 063601 | Relaxation of an Isolated Dipolar-Interacting Rydberg Quantum Spin System
[30] | Witzel W M, Carroll M S, Cywiński L and Sarma S D 2012 Phys. Rev. B 86 035452 | Quantum decoherence of the central spin in a sparse system of dipolar coupled spins
[31] | Cywiński L, Witzel W M and Sarma S D 2009 Phys. Rev. Lett. 102 057601 | Electron Spin Dephasing due to Hyperfine Interactions with a Nuclear Spin Bath
[32] | Klinowski J 2017 NMR of Solids 3rd edn (Oxford: Academic Press) |
[33] | Warren W S, Richter W, Andreotti A H and Farmer B T 1993 Science 262 2005 | Generation of impossible cross-peaks between bulk water and biomolecules in solution NMR
[34] | Dobrovitski V V and De Raedt H A 2003 Phys. Rev. E 67 056702 | Efficient scheme for numerical simulations of the spin-bath decoherence
[35] | Farhi E, Goldstone J, Gutmann S, Lapan J, Lundgren A and Preda D 2001 Science 292 472 | A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem
[36] | Shi A Q, Guan H Y and Zhang W X 2020 Phys. Lett. A 384 126745 | Efficient diabatic quantum algorithm in number factorization
[37] | Choi V 2011 Proc. Natl. Acad. Sci. USA 108 E19–E20 | Different adiabatic quantum optimization algorithms for the NP-complete exact cover problem