Surface-Induced Enhancement of Piezoelectricity in ZnO Nanowires
Gong Chen1** , Pan-Shuo Wang2
1 Department of Physics, University of Science and Technology of China, Hefei 2300262 Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433
Abstract :Piezoelectric nanowires are promising building blocks in various micro-electromechanical systems. Using first-principles calculations, we systematically investigate the influence of surface and volume changes on piezoelectric coefficients in [001]-oriented ZnO nanowires and hollow nanowires. We find that the increased non-axial ion displacements under strain near the {100} surface cause a notable enhancement in piezoelectric coefficients for these nanowires. Furthermore, by introducing the obtained surface modifications, we break through the limitation of simulation size and obtain the piezoelectric coefficients at the experimental size. Our findings are of importance to expand simulations and guide experimental explorations.
收稿日期: 2018-07-27
出版日期: 2018-11-23
:
77.65.Bn
(Piezoelectric and electrostrictive constants)
61.46.Km
(Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))
61.46.Np
(Structure of nanotubes (hollow nanowires))
[1] Wang P S, Ren W, Bellaiche L and Xiang H J 2015 Phys. Rev. Lett. 114 147204 [2] Wang P S and Xiang H J 2014 Phys. Rev. X 4 011035 [3] Wu D X, Cheng H B, Zheng X J, Wang X Y, Wang D and Li J 2015 Chin. Phys. Lett. 32 108102 [4] Zhao L S, Chen C P, Liu L L, Yu H X, Chen Y and Wang X C 2018 Chin. Phys. B 27 016301 [5] Espinosa H D, Bernal R A and Minary-Jolandan M 2012 Adv. Mater. 24 4656 [6] Liang L Y, Kang X L, Sang Y H and Liu H 2016 Adv. Sci. 3 1500358 [7] Zhang J and Meguid S A 2017 Semicond. Sci. Technol. 32 043006 [8] Wang Z L 2017 Mater. Today 20 74 [9] Feng J D, Graf M, Liu K, Ovchinnikov D, Dumcenco D, Heiranian M, Nandigana V, Aluru N R, Kis A and Radenovic A 2016 Nature 536 197 [10] Fan F R, Tang W and Wang Z L 2016 Adv. Mater. 28 4283 [11] Hu G W, Zhang Y, Li L J and Wang Z L 2018 ACS Nano 12 779 [12] Liu S H, Wang L F, Wang Z, Cai Y F, Feng X L, Qin Y and Wang Z L 2018 ACS Nano 12 1732 [13] Wang L F, Liu S H, Gao G Y, Pang Y K, Yin X, Feng X L, Zhu L P, Bai Y, Chen L B, Xiao T X, Wang X D, Qin Y and Wang Z L 2018 ACS Nano 12 4903 [14] Zhu L P, Wang L F, Pan C F, Chen L B, Xue F, Chen B D, Yang L J, Su L and Wang Z L 2017 ACS Nano 11 1894 [15] Huang X, Du C H, Zhou Y L, Jiang C Y, Pu X, Liu W, Hu W G, Chen H and Wang Z L 2016 ACS Nano 10 5145 [16] Ghosh M and Rao M G 2013 Mater. Express 3 319 [17] Xu S Y, Poirier G and Yao N 2012 Nano Lett. 12 2238 [18] Minary-Jolandan M, Bernal R A and Espinosa H D 2011 MRS Commun. 1 45 [19] Agrawal R and Espinosa H D 2011 Nano Lett. 11 786 [20] Qin C Q, Gu Y S, Sun X, Wang X Q and Zhang Y 2015 Nano Res. 8 2073 [21] Yan Z and Jiang L Y 2017 J. Nanomater. 7 27 [22] Xiang H J, Yang J L, Hou J G and Zhu Q S 2006 Appl. Phys. Lett. 89 223111 [23] Zhang Y H, Hong J W, Liu B and Fang D N 2010 Nanotechnology 21 015701 [24] Santos C L dos and Piquini P 2010 Phys. Rev. B 81 075408 [25] Chen Y Q, En Y F, Huang Y, Kong X D, Zheng X J and Lu Y D 2011 Appl. Phys. Lett. 99 203106 [26] Dai S X, Gharbi M, Sharma P and Park H S 2011 J. Appl. Phys. 110 104305 [27] Yan Z and Jiang L Y 2011 J. Phys. D 44 075404 [28] Hoang M T, Yvonnet J, Mitrushchenkov A and Chambaud G 2013 J. Appl. Phys. 113 014309 [29] Zhang J, Wang C Y, Chowdhury R and Adhikari S 2013 Scr. Mater. 68 627 [30] Zelisko M, Hanlumyuang Y, Yang S B, Liu Y M, Lei C H, Li J Y, Ajayan P M and Sharma P 2014 Nat. Commun. 5 4284 [31] Zhang J 2014 Appl. Phys. Lett. 104 253110 [32] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [33] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15 [34] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566 [35] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048 [36] Resta R and Vanderbilt D 2007 Phys. Ferroelectr. 105 31 [37] Saghi-Szabo G, Cohen R E and Krakauer H 1998 Phys. Rev. Lett. 80 4321 [38] Vanderbilt D 2000 J. Phys. Chem. Solids 61 147 [39] Catti M, Noel Y and Dovesi R 2003 J. Phys. Chem. Solids 64 2183 [40] Hill N A and Waghmare U 2000 Phys. Rev. B 62 8802 [41] Hu C J, Lin Y H, Tang C W, Tsai M Y, Hsu W K and Kuo H F 2011 Adv. Mater. 23 2941 [42] Kayaci F, Vempati S, Ozgit-Akgun C, Donmez I, Biyikli N and Uyar T 2015 Appl. Catal. B 176-177 646 [43] Lee J H, Kim J Y, Kim J H, Mirzaei A, Kim H W and Kim S S 2017 Nano Convergence 4 27
[1]
WANG Chun-Mei;DUAN Yi-Feng;CHEN Chang-Qing. First-Principles Study of Tetragonal BaTiO3 Subjected to Uniaxial Tensile Stress along the c Axis [J]. 中国物理快报, 2009, 26(1): 17203-017203.
[2]
XU Jian-Xiu;ZHAO Liang;ZHANG Cheng-Ju. Dielectric and Piezoelectric Properties of Sodium Bismuth Titanate Ceramics with KCe Substitution [J]. 中国物理快报, 2008, 25(12): 4414-4416.
[3]
LIU Hong-Mei;ZHAO Quan-Liang;CAO Mao-Sheng;YUAN Jie;DUAN Zhong-Xia;QIU Cheng-Jun;. Electromechanical Properties of Microcantilever Actuated by Enhanced Piezoelectric PZT Thick Film [J]. 中国物理快报, 2008, 25(11): 4128-4130.
[4]
JIANG Xiang-Ping;ZHENG Yan-Yan;JIANG Fu-Lan;LIU Li-Hua;KWOK Kin-Wing;CHAN-WONG Lai-Wa. Properties of Co-Doped 0.92(Na0.5 Bi0.5 ) TiO3 -0.08BaTiO3 Lead-Free Ceramics [J]. 中国物理快报, 2007, 24(11): 3257-3259.
[5]
LI Fa-Xin;FANG Dai-Ning;FENG Xue. Effect of Lateral Pressure On The Non-Linear Behavior of PZT
Ceramics [J]. 中国物理快报, 2003, 20(12): 2250-2251.
[6]
NAN Cewen. A General Theory of Coupled Linear-Response of Inhomogeneous Media [J]. 中国物理快报, 1995, 12(3): 183-185.