Effect of Nickel Distributions Embedded in Amorphous Carbon Films on Transport Properties
Vali Dalouji1** , Dariush Mehrparvar1 , Shahram Solaymani2 , Sahar Rezaee3
1 Department of Physics, Faculty of Science, Malayer University, Malayer, Iran2 Department of Physics, Science and Research Branch, Islamic Azad University, Tehran, Iran3 Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
Abstract :Electrical properties of C/Ni films are studied using four mosaic targets made of pure graphite and stripes of nickel with the surface areas of 1.78, 3.21, 3.92 and 4.64%. The conductivity data in the temperature range of 400–500 K shows the extended state conduction. The conductivity data in the temperature range of 150–300 K shows the multi-phonon hopping conduction. The Berthelot-type conduction dominates in the temperature range of 50–150 K. The conductivity of the films in the temperature range about $T < 50$ K is described in terms of variable-range hopping conduction. In low temperatures, the localized density of state around Fermi level $N(E_{\rm F})$ for the film deposition with 3.92% nickel has a maximum value of about $56.2\times10^{17}$ cm$^{-3}$eV$^{-1}$ with the minimum average hopping distance of about $3.43\times10^{-6}$ cm.
收稿日期: 2017-09-26
出版日期: 2018-01-23
:
65.80.-g
(Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)
66.30.Pa
(Diffusion in nanoscale solids)
68.47.Fg
(Semiconductor surfaces)
[1] Dejam L, Elahi S M, Nazari H H et al 2016 J. Mater. Sci.: Mater. Electron. 27 685 [2] Dalouji V, Elahi S M, Solaymani S et al 2016 Appl. Phys. A 122 541 [3] Ghodselahi T, Solaymani S, Akbarzadeh Pasha M et al 2012 Eur. Phys. J. D 66 299 [4] Chang Y Y, Wang D Y and Wu W 2002 Thin Solid Films 420 241 [5] Ţǎlu Ş Bramowicz M, Kulesza S et al 2016 J. Microsc. 264 143 [6] Ţǎlu Ş Bramowicz M, Kulesza S et al 2016 Electron. Mater. Lett. 12 580 [7] Ţǎlu Ş Bramowicz M, Kulesza S et al 2017 Opt. Quantum Electron. 49 204 [8] Kaiser A B and Skákalová V 2011 Chem. Soc. Rev. 40 3786 [9] Wen B, Cao M, Lu M et al 2014 Adv. Mater. 26 3484 [10] Cao M S, Song W L and Hou Z L 2010 Carbon 48 788 [11] Wen B, Cao M S and Hou Z L 2013 Carbon 65 124 [12] Sedlackova K, Lobotka P, Vavra I et al 2005 Carbon 43 2192 [13] Kumar R and Khare N 2008 Thin Solid Films 516 1302 [14] Ghodselahi T, Vesaghi M A, Shafiekhani A et al 2010 Physica B 405 3949 [15] Epstein K, Goldman A M and Kadin A M 1983 Phys. Rev. B 27 6685 [16] Toker D, Azulay D, Shimoni N et al 2003 Phys. Rev. B 68 041403 [17] Garcia-Zarco O, Rodil S E and Camacho-Lopez M A 2009 Thin Solid Films 518 1493 [18] Broers A N, Molzen W W, Cuomo J J et al 1976 Appl. Phys. Lett. 29 596 [19] Chow G M, Ding J and Zhang J 2002 Appl. Phys. Lett. 80 1028 [20] Dalouji V 2017 Optik 148 1 [21] Dalouji V and Asareh N 2017 Opt. Quantum Electron. 49 262 [22] Dalouji V, Elahi S M and Ahmadmarvili A 2017 Silicon 9 717 [23] Ţǎlu Ş Bramowicz M, Kulesza S et al 2016 Microsc. Res. Tech. 79 1208 [24] Dalouji V and Elahi S M 2016 Surf. Rev. Lett. 23 1650002 [25] Dalouji V 2016 Mater. Sci.-Poland 34 337 [26] Bansal S, Pandya D K and Kashyap S C 2012 Thin Solid Films 524 30 [27] Serin T, Yildiz A, Sahin S H et al 2011 Physica B 406 3551 [28] Singh J and Shimakawa K 2003 Advances in Amorphous Semiconductors (London: Taylor & Francis) [29] Emin D 1974 Phys. Rev. Lett. 32 303 [30] Islam M N, Ram S K and Kumar S 2009 Physica E 41 1025 [31] Dalouji V, Elahi S M, Ghaderi A et al 2016 Chin. Phys. Lett. 33 057203 [32] Tan M, Köseoglu Y, Alan F et al 2011 J. Alloys Compd. 509 9399 [33] Hurd C M 1985 J. Phys. C: Solid State Phys. 18 1985 6487 [34] Mehra R M, Vivechana A, Vijay A S et al 1998 J. Appl. Phys. 83 2235 [35] Mott N F and Davis E A 1971 Electronic Processes in Non-Crystalline Materials (Oxford: Clarendon Press)
[1]
. [J]. 中国物理快报, 2021, 38(2): 24401-.
[2]
. [J]. 中国物理快报, 2017, 34(2): 26402-026402.
[3]
. [J]. 中国物理快报, 2015, 32(09): 96501-096501.
[4]
. [J]. 中国物理快报, 2015, 32(07): 76501-076501.
[5]
. [J]. 中国物理快报, 2014, 31(1): 16403-016403.
[6]
. [J]. 中国物理快报, 2014, 31(1): 16501-016501.
[7]
. [J]. 中国物理快报, 2013, 30(11): 116501-116501.
[8]
LÜ Yong-Jun**. Enhanced Surface Premelting of Ni90 Si10 Nanoparticles [J]. 中国物理快报, 2012, 29(4): 46401-046401.
[9]
ZHOU Guo-Rui1 , FENG Guo-Ying1** , ZHANG Yi1 , MA Zi2 , WANG Jian-Jun3 . A Temperature Sensor Based on a Symmetrical Metal-Cladding Optical Waveguide [J]. 中国物理快报, 2012, 29(2): 26501-026501.
[10]
WANG Sheng-Jie;ZHANG Chun-Lai;WANG Zhi-Guo. Melting of Single-Walled Silicon Carbide Nanotubes: Density Functional Molecular Dynamics Simulation [J]. 中国物理快报, 2010, 27(10): 106101-106101.
[11]
. [J]. 中国物理快报, 2014, 31(08): 86501-086501.