Coupled Perturbed Modes over Sloping Penetrable Bottom
Fei-Long Zhu1,2 , Eric I. Thorsos3 , Feng-Hua Li1**
1 State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190
2 University of Chinese Academy of Sciences, Beijing 100049
3 Applied Physics Laboratory, University of Washington, WA 98105, USA
Abstract :In environments with water depth variations, one-way modal solutions involve mode coupling. Higham and Tindle developed an accurate and fast approach using perturbation theory to locally determine the change in mode functions at steps. The method of Higham and Tindle is limited to low frequency ($\le$250 Hz). We extend the coupled perturbation method, thus it can be applied to higher frequencies. The approach is described and some examples are given.
收稿日期: 2017-02-24
出版日期: 2017-06-23
:
43.30.Bp
(Normal mode propagation of sound in water)
43.20.Bi
(Mathematical theory of wave propagation)
43.20.Mv
(Waveguides, wave propagation in tubes and ducts)
[1] Evans R B 1983 J. Acoust. Soc. Am. 74 188 [2] Higham C J and Tindle C T 2003 J. Acoust. Soc. Am. 114 3119 [3] Tindle C T, O' Driscoll L M and Higham C J 2000 J. Acoust. Soc. Am. 108 76 [4] Higham C J and Tindle C T 2003 J. Acoust. Soc. Am. 113 2515 [5] Wang H Z, Wang N and Gao W 2009 Periodical of Ocean University of China 39 160 (in Chinese) [6] Jensen F B, Kuperman W A, Porter M B and Schmidt H 2011 Computational Ocean Acoustics 2nd edn (New York: Springer) [7] Courant R and Hilbert D 1953 Methods of Mathematical Physics (New York: Interscience) vol I chap VI [8] Wilcox C H 1984 Sound Propagation in Stratified Fluids (New York: Springer) chap 2 sec 1 Wilcox C H 1984 Sound Propagation in Stratified Fluids (New York: Springer) chap 3 sec 9 [9] Friedman B 1956 Principles and Techniques of Applied Mathematics (New York: Wiley) chap 4 [10] Waxler R 2002 J. Acoust. Soc. Am. 112 2540 [11] Porter M B, Jensen F B and Ferla C M 1991 J. Acoust. Soc. Am. 89 1058 [12] Porter M B The KRAKEN Normal Mode Program (DRAFT) (SACLANT Undersea Research Centre) [13] Abawi A T, Kuperman W A and Collins M D 1997 J. Acoust. Soc. Am. 102 233 [14] Peng Z H and li F H 2001 Sci. Chin. A 31 165 (in Chinese)
[1]
. [J]. 中国物理快报, 2018, 35(8): 84301-.
[2]
. [J]. 中国物理快报, 2015, 32(06): 64303-064303.
[3]
. [J]. 中国物理快报, 2015, 32(02): 24301-024301.
[4]
. [J]. 中国物理快报, 2013, 30(11): 114301-114301.
[5]
. [J]. 中国物理快报, 2013, 30(8): 84301-084301.
[6]
. [J]. 中国物理快报, 2013, 30(7): 74301-074301.
[7]
. [J]. 中国物理快报, 2012, 29(10): 104303-104303.
[8]
LUO Wen-Yu**;YANG Chun-Mei;ZHANG Ren-He. Generalized Coupled-Mode Formulation for Sound Propagation in Range-Dependent Waveguides [J]. 中国物理快报, 2012, 29(1): 14302-014302.
[9]
WANG Hao-Zhong;WANG Ning;GAO Da-Zhi
. Data-Derived Estimation of Source Depth Using Vertical Line Array Data in Shallow Water [J]. 中国物理快报, 2011, 28(11): 114302-114302.
[10]
LI Qian-Qian;**;LI Zheng-Lin;ZHANG Ren-He
. Applications of Waveguide Invariant Theory to the Analysis of Interference Phenomena in Deep Water [J]. 中国物理快报, 2011, 28(3): 34303-034303.
[11]
LUO Wen-Yu**;SCHMIDT Henrik. Three-Dimensional Mode Coupling around a Conical Seamount and the Use of Random Discretization [J]. 中国物理快报, 2010, 27(11): 114302-114302.
[12]
LUO Wen-Yu;SCHMIDT Henrik. A Spectral Coupled-Mode Formulation for Sound Propagation around Axisymmetric Seamounts [J]. 中国物理快报, 2010, 27(9): 94304-094304.
[13]
ZHANG Yan-Jun;ZHANG Ren-He;LI Feng-Hua. Frequency Dependence of Transverse Correlation Coefficient in the Yellow Sea [J]. 中国物理快报, 2010, 27(8): 84301-084301.
[14]
ZHAO Zhen-Dong;WANG Ning;GAO Da-Zhi;WANG Hao-Zhong. Broadband Source Ranging in Shallow Water Using the Ω-Interference Spectrum [J]. 中国物理快报, 2010, 27(6): 64301-064301.
[15]
LI Feng-Hua; ZHANG Ren-He. Frequency Dependence of Longitudinal Correlation Length inthe Yellow Sea [J]. 中国物理快报, 2008, 25(7): 2539-2541.