Numerical Solution of Range-Dependent Acoustic Propagation
QIN Ji-Xing1,2** , LUO Wen-Yu1 , ZHANG Ren-He1 , YANG Chun-Mei1,2
1 State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 1001902 University of Chinese Academy of Sciences, Beijing 100049
Abstract :The direct global matrix approach can be applied to modeling of range-dependent sound propagation in order to achieve numerically stable and accurate solutions. By solving the global system directly, this method features high efficiency as well as accuracy by avoiding error accumulation. It is an important issue to solve linear systems numerically in the direct global matrix approach, especially for the large-scale problems. An efficient and memory-saving algorithm is developed for solving the global system, in which the global coefficient matrix is treated as a block pentadiagonal matrix. As a result, this numerical model has the ability to solve large-scale problems on regular computers. Numerical examples are also presented to demonstrate the accuracy and efficiency of this method.
收稿日期: 2013-04-26
出版日期: 2013-11-21
:
43.30.Bp
(Normal mode propagation of sound in water)
43.30.Gv
(Backscattering, echoes, and reverberation in water due to combinations of boundaries)
02.10.Yn
(Matrix theory)
[1] Collis J M, Siegmann W L, Jensen F B, Zampolli M, Küsel E T and Collins M D 2008 J. Acoust. Soc. Am. 123 51 [2] Pierce A D 1965 J. Acoust. Soc. Am. 37 19 [3] Evans R B 1983 J. Acoust. Soc. Am. 74 188 [4] Zhang R H, Liu H, He Y and Akulichev V A 1994 Acta Acust. 19 408 (in Chinese) [5] Zhang R H, He Y, Liu H and Akulichev V A 1995 J. Sound Vib. 184 439 [6] Gao B, Yang S E, Piao S C and Huang Y W 2010 Sci. Chin. Phys. Mech. Astron. 53 2216 [7] Wang H Z, Wang N and Gao D Z 2011 Chin. Phys. Lett. 28 114302 [8] Collins M D, Schmidt H and Siegmann W L 2000 J. Acoust. Soc. Am. 107 1964 [9] Thompson L L 2006 J. Acoust. Soc. Am. 119 1315 [10] Zampolli M, Tesei A, Jensen F B, Malm N and Blottman III J B 2007 J. Acoust. Soc. Am. 122 1472 [11] Milder D M 1969 J. Acoust. Soc. Am. 46 1259 [12] Rutherford S R and Hawker K E 1981 J. Acoust. Soc. Am. 70 554 [13] Fawcett J A 1992 J. Acoust. Soc. Am. 92 290 [14] Godin O A 1998 J. Acoust. Soc. Am. 103 159 [15] Athanassoulis G A, Belibassakis K A, Mitsoudis D A, Kampanis N A and Dougalis V A 2008 J. Comput. Acoust. 16 83 [16] Evans R B 1986 J. Acoust. Soc. Am. 80 1414 [17] Luo W Y, Yang C M, Qin J X and Zhang R H 2012 Sci. Chin. Phys. Mech. Astron. 55 572 [18] Luo W Y, Yang C M and Zhang R H 2012 Chin. Phys. Lett. 29 014302 [19] Jensen F B, Kuperman W A, Porter M B and Schmidt H 2011 Computational Ocean Acoustics 2nd edn (New York: Springer) p 341 [20] Chen F, Lu Q and Yuan Z J 2008 J. Hefei Univ. Technol. 31 1904 (in Chinese) [21] Buckingham M J and Tolstoy A 1990 J. Acoust. Soc. Am. 87 1511 [22] Jensen F B 1998 J. Acoust. Soc. Am. 104 1310
[1]
. [J]. 中国物理快报, 2018, 35(8): 84301-.
[2]
. [J]. 中国物理快报, 2017, 34(7): 74302-.
[3]
. [J]. 中国物理快报, 2015, 32(06): 64303-064303.
[4]
. [J]. 中国物理快报, 2015, 32(02): 24301-024301.
[5]
. [J]. 中国物理快报, 2013, 30(11): 114301-114301.
[6]
. [J]. 中国物理快报, 2013, 30(8): 84301-084301.
[7]
. [J]. 中国物理快报, 2012, 29(10): 104303-104303.
[8]
LUO Wen-Yu**;YANG Chun-Mei;ZHANG Ren-He. Generalized Coupled-Mode Formulation for Sound Propagation in Range-Dependent Waveguides [J]. 中国物理快报, 2012, 29(1): 14302-014302.
[9]
WANG Hao-Zhong;WANG Ning;GAO Da-Zhi
. Data-Derived Estimation of Source Depth Using Vertical Line Array Data in Shallow Water [J]. 中国物理快报, 2011, 28(11): 114302-114302.
[10]
LI Qian-Qian;**;LI Zheng-Lin;ZHANG Ren-He
. Applications of Waveguide Invariant Theory to the Analysis of Interference Phenomena in Deep Water [J]. 中国物理快报, 2011, 28(3): 34303-034303.
[11]
LUO Wen-Yu**;SCHMIDT Henrik. Three-Dimensional Mode Coupling around a Conical Seamount and the Use of Random Discretization [J]. 中国物理快报, 2010, 27(11): 114302-114302.
[12]
LUO Wen-Yu;SCHMIDT Henrik. A Spectral Coupled-Mode Formulation for Sound Propagation around Axisymmetric Seamounts [J]. 中国物理快报, 2010, 27(9): 94304-094304.
[13]
ZHANG Yan-Jun;ZHANG Ren-He;LI Feng-Hua. Frequency Dependence of Transverse Correlation Coefficient in the Yellow Sea [J]. 中国物理快报, 2010, 27(8): 84301-084301.
[14]
ZHAO Zhen-Dong;WANG Ning;GAO Da-Zhi;WANG Hao-Zhong. Broadband Source Ranging in Shallow Water Using the Ω-Interference Spectrum [J]. 中国物理快报, 2010, 27(6): 64301-064301.
[15]
LI Feng-Hua; ZHANG Ren-He. Frequency Dependence of Longitudinal Correlation Length inthe Yellow Sea [J]. 中国物理快报, 2008, 25(7): 2539-2541.