A High-Order Conservative Numerical Method for Gross–Pitaevskii Equation with Time-Varying Coefficients in Modeling BEC
Xiang Li1 , Xu Qian1,2** , Ling-Yan Tang1 , Song-He Song1
1 College of Science and State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 4100732 Academy of Ocean Science and Engineering, National University of Defense Technology, Changsha 410073
Abstract :We propose a high-order conservative method for the nonlinear Schrödinger/Gross–Pitaevskii equation with time-varying coefficients in modeling Bose–Einstein condensation (BEC). This scheme combined with the sixth-order compact finite difference method and the fourth-order average vector field method, finely describes the condensate wave function and physical characteristics in some small potential wells. Numerical experiments are presented to demonstrate that our numerical scheme is efficient by the comparison with the Fourier pseudo-spectral method. Moreover, it preserves several conservation laws well and even exactly under some specific conditions.
收稿日期: 2017-01-05
出版日期: 2017-05-23
:
02.60.Lj
(Ordinary and partial differential equations; boundary value problems)
02.70.Bf
(Finite-difference methods)
02.60.Cb
(Numerical simulation; solution of equations)
02.60.Jh
(Numerical differentiation and integration)
[1] Kunze M 1999 Physica D 128 273 [2] Kivshar Y S, Alexander T J and Turitsyn S K 2001 Phys. Lett. A 278 225 [3] Mallory K and Van Gorder R A 2014 Phys. Rev. E 89 013204 [4] Hong J L and Kong L H 2010 Commun. Comput. Phys. 7 613 [5] Bao W Z and Shen J 2005 SIAM J. Sci. Comput. 26 2010 [6] Dehghan M and Taleei A 2010 Comput. Phys. Commun. 181 43 [7] Zhou X F, Zhang S L, Zhou Z W, Malomed B A and Pu H 2012 Phys. Rev. A 85 023603 [8] Cartarius H and Wunner G 2012 Phys. Rev. A 86 013612 [9] D Agosta R and Presilla C 2002 Phys. Rev. A 65 043609 [10] Bronski J C, Carr L D, Deconinck B, Kutz J N and Promislow K 2001 Phys. Rev. E 63 036612 [11] Chen Y M, Song S H and Zhu H J 2012 Appl. Math. Comput. 218 5552 [12] Lv Z Q, Wang Y S and Song Y Z 2013 Chin. Phys. Lett. 30 030201 [13] Qian X, Fu H and Song S H 2016 Appl. Math. Comput. 307 1 [14] Hu W P, Deng Z and Yin T 2017 Commun. Nonlinear. Sci. 42 298 [15] Ma Y P, Kong L H and Hong J L 2011 Comput. Math. Appl. 61 319 [16] Qian X, Song S H, Gao E and Li W B 2012 Chin. Phys. B 21 070206 [17] Cai J X and Wang Y S 2013 Chin. Phys. B 22 060207 [18] Quispel G R W and McLaren D I 2008 J. Phys. A 41 045206 [19] Celledoni E, Grimm V, McLachlan R I, McLaren D, O Neale D, Owren B and Quispel G 2012 J. Comput. Phys. 231 6770 [20] Zhang H, Song S H, Chen X D and Zhou W E 2014 Chin. Phys. B 23 070208 [21] Jiang C L and Sun J Q 2014 Chin. Phys. B 23 050202 [22] Cai J X, Wang Y and Gong Y 2015 J. Sci. Comput. 1 36
[1]
. [J]. 中国物理快报, 2022, 39(7): 73101-.
[2]
. [J]. 中国物理快报, 2017, 34(9): 90202-.
[3]
. [J]. 中国物理快报, 2014, 31(04): 40201-040201.
[4]
. [J]. 中国物理快报, 2014, 31(03): 30201-030201.
[5]
. [J]. 中国物理快报, 2013, 30(12): 120201-120201.
[6]
. [J]. 中国物理快报, 2013, 30(2): 20201-020201.
[7]
. [J]. Chin. Phys. Lett., 2013, 30(2): 20204-020204.
[8]
A. Yildirim, A. Gökdoğan, M. Merdan, V. Lakshminarayanan. Numerical Approximations to the Solution of Ray Tracing through the Crystalline Lens [J]. 中国物理快报, 2012, 29(7): 74202-074202.
[9]
PAN Feng, XIE Ming-Xia, SHI Chang-Liang, J. P. DRAAYER. Quasi-exactly Solvable Cases of the N -Dimensional Symmetric Quartic Anharmonic Oscillator [J]. 中国物理快报, 2012, 29(7): 70304-070304.
[10]
S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation [J]. 中国物理快报, 2012, 29(4): 45201-045201.
[11]
Junaid Ali Khan**;Muhammad Asif Zahoor Raja**;Ijaz Mansoor Qureshi
. Novel Approach for a van der Pol Oscillator in the Continuous Time Domain [J]. 中国物理快报, 2011, 28(11): 110205-110205.
[12]
SI Xin-Hui**;ZHENG Lian-Cun;ZHANG Xin-Xin;SI Xin-Yi;YANG Jian-Hong
. Flow of a Viscoelastic Fluid through a Porous Channel with Expanding or Contracting Walls [J]. 中国物理快报, 2011, 28(4): 44702-044702.
[13]
Junaid Ali Khan*;Muhammad Asif Zahoor Raja**;Ijaz Mansoor Qureshi
. Stochastic Computational Approach for Complex Nonlinear Ordinary Differential Equations [J]. 中国物理快报, 2011, 28(2): 20206-020206.
[14]
FENG Jun-Sheng**;LIU Zheng;GUO Jian-You
. Bound and Resonant States of the Hulthén Potential Investigated by Using the Complex Scaling Method with the Oscillator Basis [J]. 中国物理快报, 2010, 27(11): 110304-110304.
[15]
ZHANG Zhan-Long;DENG Jun;XIAO Dong-Ping;HE Wei;TANG Ju. An Adaptive Fast Multipole Higher Order Boundary Element Method for Power Frequency Electric Field of Substation [J]. 中国物理快报, 2010, 27(3): 34105-034105.