摘要An extension of the operational Tau method (OTM) is used to solve the Fokker–Planck equation arising in many physical problems. This extension yields an algebraic equivalent representation of the desired problem using arbitrary polynomial basis functions to decrease the size of the computations. The structure, properties and advantages of the OTM are presented, and some illustrative linear and nonlinear experiments are given to show the capability and efficiency of the proposed algorithm.
Abstract:An extension of the operational Tau method (OTM) is used to solve the Fokker–Planck equation arising in many physical problems. This extension yields an algebraic equivalent representation of the desired problem using arbitrary polynomial basis functions to decrease the size of the computations. The structure, properties and advantages of the OTM are presented, and some illustrative linear and nonlinear experiments are given to show the capability and efficiency of the proposed algorithm.
S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation[J]. 中国物理快报, 2012, 29(4): 45201-045201.
S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation. Chin. Phys. Lett., 2012, 29(4): 45201-045201.
[1] Risken H 1989 The Fokker–Planck Equation: Method of Solution and Applications (Berlin: Springer)[2] Jesson D E 2003 Trans. R. Soc. South Africa 58 141[3] Apostolova T and Troev T 2010 J. Phys.: Conf. Ser. 207 012034[4] Frank T D 2004 Physica A 331 391[5] Palleschi V and Rosa M 1992 Phys. Lett. A 163 381[6] Palleschi V, Sarri F, Marcozzi G and Torquati M R 1990 Phys. Lett. A 146 387[7] Leung K, Shizgal B D and Chen H 1998 J. Math. Chem. 24 291[8] Dehghan M and Tatari M 2006 Phys. Scr. 74 310[9] Dehghan M and Tatari M 2007 Math. Comput. Model 45 639[10] Jafari M A and Aminataei A 2009 Phys. Scr. 80 217[11] Ortiz E L and Samara H 1983 Computing 31 95[12] Lanczos C 1938 J. Math. Phys. 17 123[13] Vanani S K and Aminataei A 2011 Comput. Math. Appl. 62 1075[14] Vanani S K and Soleymani F 2012 Math. Comput. Model. (in press)[15] Vanani S K and Aminataei A 2011 Comput. Appl. Math. 30 655[16] Haghani F K, Vanani S K and Hafshejani J S 2011 World Appl. Sci. J. 13 18[17] Hafshejani J S, Vanani S K and Esmaily J 2011 J. Appl. Sci. 14 2585[18] Liu K M and Ortiz E L 1986 Comput. Math. Appl. B 12 1153[19] Ortiz E L and Pun K S 1985 J. Comput. Appl. Math. 12 511[20] Ortiz E L and Samara H 1984 Comput. Math. Appl. 10 5[21] EL-Daou M K and Khajah H G 1997 Math. Comput 66 207[22] Liu K M and Pan C K 1999 Comput. Math. Appl. 38 197[23] Odibat Z and Momani S 2007 Phys. Lett. A 369 349[24] Yildirim A 2010 J. King Saud University 22 257