A Novel Real-Time State-of-Health and State-of-Charge Co-Estimation Method for LiFePO$_{4}$ Battery
Rong-Xue Qiao1 , Ming-Jian Zhang1 , Yi-Dong Liu1 , Wen-Ju Ren1 , Yuan Lin1,2** , Feng Pan1**
1 School of Advanced Materials, Peking University, Peking University Shenzhen Graduate School, Shenzhen 5180552 Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190
Abstract :The state of charge (SOC) and state of health (SOH) are two of the most important parameters of Li-ion batteries in industrial production and in practical applications. The real-time estimation for these two parameters is crucial to realize a safe and reliable battery application. However, this is a great problem for LiFePO$_{4}$ batteries due to the large constant potential plateau in the charge/discharge process. Here we propose a combined SOC and SOH co-estimation method based on the experimental test under the simulating electric vehicle working condition. A first-order resistance-capacitance equivalent circuit is used to model the battery cell, and three parameter values, ohmic resistance ($R_{\rm s})$, parallel resistance ($R_{\rm p})$ and parallel capacity ($C_{\rm p})$, are identified from a real-time experimental test. Finally we find that $R_{\rm p}$ and $C_{\rm p}$ could be utilized to make a judgement on the SOH. More importantly, the linear relationship between $C_{\rm p}$ and the SOC is established to make the estimation of the SOC for the first time.
收稿日期: 2016-03-27
出版日期: 2016-08-01
:
82.47.Aa
(Lithium-ion batteries)
88.05.Hj
(Energy content issues; life cycle analysis)
88.05.Vx
(Energy use in industry and manufacturing)
81.70.-q
(Methods of materials testing and analysis)
[1] Dubarry M, Vuillaume N and Liaw B Y 2009 J. Power Sources 186 500 [2] Liu Y H and Luo Y F 2010 IEEE Trans. Ind. Electron. 57 3963 [3] Gao J, Shi S Q and Li H 2016 Chin. Phys. B 25 018210 [4] Ferg E, Rossouw C and Loyson P 2013 J. Power Sources 226 299 [5] Leng F, Tan C M, Yazami R and Minh Duc L 2014 J. Power Sources 255 423 [6] Xiong B, Zhao J and Wei Z 2014 J. Power Sources 262 50 [7] Li J, Barillas J K, Guenther C and Danzer M A 2014 J. Power Sources 247 156 [8] Maharjan L, Inoue S, Akagi H and Asakura J 2009 IEEE Trans. Power Electron. 24 1628 [9] Spotnitz R 2003 J. Power Sources 113 72 [10] Ng K S, Moo C S, Chen Y P and Hsieh Y C 2009 Appl. Energy 86 1506 [11] Dubarry M, Svoboda V, Hwu R and Liaw B Y 2007 J. Power Sources 174 1121 [12] Pop V, Bergveld H J, Op het Veld J H G and Regtien P P L 2006 J. Electrochem. Soc. 153 A2013 [13] Pop V, Bergveld H J, Notten P H L and Regtien P P L 2005 Meas. Sci. Technol. 16 R93 [14] Snihir I, Rey W, Verbitskiy E, Belfadhel-Ayeb A and Notten P H L 2006 J. Power Sources 159 1484 [15] Roscher M A and Sauer D U 2011 J. Power Sources 196 331 [16] Plett G L 2004 J. Power Sources 134 262 [17] Charkhgard M and Farrokhi M 2010 IEEE Trans. Ind. Electron. 57 4178 [18] Lee J, Nam O and Cho B H 2007 J. Power Sources 174 9 [19] Zheng H, Liu X and Wei M 2015 Chin. Phys. B 24 098801 [20] Kim I S 2008 IEEE Trans. Power Electron. 23 2027 [21] Kim I S 2010 IEEE Trans. Power Electron. 25 1013 [22] Zhang F, Liu G and Fang L 2008 7th World Congress on Intelligent Control and Automation (Chongqing, 25–27 June 2008) p 989 [23] Kim I S 2006 J. Power Sources 163 584 [24] Chan C C, Lo E W C and Shen W X 2000 J. Power Sources 87 201 [25] Bi J, Shao S, Guan W and Wang L 2012 Chin. Phys. B 21 118801 [26] Chau K T, Wu K C and Chan C C 2004 Energy Convers. Manage. 45 1681 [27] Singh P, Vinjamuri R, Wang X and Reisner D 2006 J. Power Sources 162 829 [28] Zhang C, Zhang Y and Li Y 2015 IEEE/ASME Trans. Mechatronics 20 2604 [29] Chen Z, Mi C C, Fu Y, Xu J and Gong X 2013 J. Power Sources 240 184 [30] Remmlinger J, Buchholz M, Meiler M, Bernreuter P and Dietmayer K 2011 J. Power Sources 196 5357 [31] Eddahech A, Briat O, Bertrand N, Delétage J Y and Vinassa J M 2012 Int. J. Electr. Power Energy Syst. 42 487
[1]
. [J]. 中国物理快报, 2022, 39(3): 38201-.
[2]
. [J]. 中国物理快报, 2022, 39(2): 28201-.
[3]
. [J]. 中国物理快报, 2022, 39(2): 28202-.
[4]
. [J]. 中国物理快报, 2021, 38(12): 126801-.
[5]
. [J]. 中国物理快报, 2021, 38(8): 88201-.
[6]
. [J]. 中国物理快报, 2021, 38(6): 68201-.
[7]
. [J]. 中国物理快报, 2021, 38(6): 68202-.
[8]
. [J]. 中国物理快报, 2019, 36(9): 98201-098201.
[9]
. [J]. 中国物理快报, 2018, 35(4): 48801-048801.
[10]
. [J]. 中国物理快报, 2015, 32(02): 26102-026102.
[11]
. [J]. 中国物理快报, 2013, 30(8): 88103-088103.
[12]
XIA Rong-Sen;CUI Zhong-Hui;LIU Bi-Qiu;GUO Xiang-Xin;ZHAO Jing-Tai. Evolutions of Crystal Structure, Stoichiometry and Electrochemical Behavior with Co Substitution in LiNi1-y Coy O2 Positive Electrodes [J]. 中国物理快报, 2010, 27(7): 76102-076102.
[13]
LIN Zhi-Ping;ZHAO Yu-Jun;ZHAO Yan-Ming. Li- Site and Metal-Site Ion Doping in Phosphate-Olivine LiCoPO4 by First-Principles Calculation [J]. 中国物理快报, 2009, 26(3): 38202-038202.
[14]
OUYANG Chu-Ying;WANG De-Yu;SHI Si-Qi;WANG Zhao-Xiang;LI Hong;HUANG Xue-Jie;CHEN Li-Quan. First Principles Study on Nax Li1-x FePO4 As Cathode Material for Rechargeable Lithium Batteries [J]. 中国物理快报, 2006, 23(1): 61-64.
[15]
OUYANG Chu-Ying;SHI Si-Qi;WANG Zhao-Xiang;LI Hong;HUANG Xue-Jie;CHEN Li-Quan. Temperature-Dependent Dynamic Properties of Lix Mn2 O4 in Monte Carlo Simulations [J]. 中国物理快报, 2005, 22(2): 489-492.