Analytical Solutions to the $D$-Dimensional Schr?dinger Equation with the Eckart Potential
Jie Gao, Min-Cang Zhang**
College of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119
Abstract :The analytical solutions to the Schr?dinger equation with the Eckart potential in arbitrary dimension $D$ is investigated by using the Nikiforov–Uvarov method, and the centrifugal term is treated approximatively with the scheme of Greene and Aldrich. The discrete spectrum is obtained and the wavefunction is expressed in terms of the Jacobi polynomial or the hypergeometric function. Some special cases of the Eckart potential are discussed for $D$=3, and the resulting energy equation agrees well with that obtained by other methods.
收稿日期: 2015-11-05
出版日期: 2016-01-29
:
03.65.-w
(Quantum mechanics)
03.65.Ge
(Solutions of wave equations: bound states)
03.65.Db
(Functional analytical methods)
[1] Dong S H 2011 Wave Equation in Higher Dimensions (Berlin: Springer) [2] Bender C M, Boettcher S and Lipatov L 1992 Phys. Rev. D 46 5557 [3] Crisan M, Bodea D, Grosu I and Tifrea I 2002 J. Phys. A: Math. Gen. 35 239 [4] Chen G, Ding Z, Perronnet A and Zhang Z 2008 J. Math. Phys. 49 062102 [5] Al-Jaber S M 2003 Int. J. Theor. Phys. 42 111 % [6] Al-Jaber S M and Lombard R J 2005 J. Phys. A: Math. Gen. 38 4637 [7] Cardoso J L and álvarez-Nodarse R 2003 J. Phys. A: Math. Gen. 36 2055 [8] Chetouani L and Hammann T F 1986 J. Math. Phys. 27 2944 [9] Schiff L I 1955 Quantum Mechanics (New York: McGraw-Hill) 3rd edn [10] Chatterjee A 1990 Phys. Rep. 186 249 [11] Nieto M M 1979 Am. J. Phys. 47 1067 [12] Moss R E 1987 Am. J. Phys. 55 397 [13] Kostelecky V A and Russell N 1996 J. Math. Phys. 37 2166 [14] Lévai G, Kónya B and Papp Z 1998 J. Math. Phys. 38 5811 [15] Xie X J and Jia C S 2015 Phys. Scr. 90 035207 [16] Ibrahim T T, Oyewumi K J and Wyngaardt S M 2012 Eur. Phys. J. Plus 127 100 [17] Gu X Y and Dong S H 2011 J. Math. Chem. 49 2053 [18] Dong S H 2002 Found. Phys. Lett. 15 385 % [19] Ikhdair S M and Sever R 2009 J. Math. Chem. 45 1137 [20] Durmus A 2011 J. Phys. A: Math. Theor. 44 155205 [21] Zeng G J, Su K L and Li M 1994 Phys. Rev. A 50 4373 [22] Chen G, Ding Z, Lin C S, Herschbach D and Scully M O 2010 J. Math. Chem. 48 791 [23] Zhang M C and Huang-Fu G Q 2012 Phys. Scr. 85 015005 [24] Zhang M C 2013 Chin. Phys. Lett. 30 110301 [25] Eckart C 1930 Phys. Rev. 35 1303 [26] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Basel: Birkhauser) [27] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 267 [28] Weiss J J 1964 J. Chem. Phys. 41 1120 [29] Jia C S, Diao Y F, Min L, Yang Q B, Sun L T and Huang R Y 2004 J. Phys. A: Math. Gen. 37 11275 [30] Jia C S, Li Y, Sun Y, Liu J Y and Sun L T 2003 Phys. Lett. A 311 115 [31] Oyewumi K J, Akinpelu F O and Agboola A D 2008 Int. J. Theor. Phys. 47 1039 [32] Avery J 1998 J. Chem. Phys. 24 169 [33] Greene R L and Aldrich C 1976 Phys. Rev. A 14 2363 [34] Dong S H, Qiang W C, Sun G H and Bezerra V B 2007 J. Phys. A: Math. Theor. 40 10535 [35] Agboola D 2009 Phys. Scr. 80 065304 [36] Gradsgteyn I S and Ryzhik I M 1994 Tables of Integrals, Series, and Products 5th edn (New York: Academic Press)
[1]
. [J]. 中国物理快报, 2022, 39(9): 90301-.
[2]
. [J]. 中国物理快报, 2022, 39(4): 47601-.
[3]
. [J]. 中国物理快报, 2022, 39(3): 37302-037302.
[4]
. [J]. 中国物理快报, 2021, 38(6): 60302-.
[5]
. [J]. 中国物理快报, 2021, 38(2): 24202-024202.
[6]
. [J]. 中国物理快报, 2020, 37(12): 120301-.
[7]
. [J]. 中国物理快报, 2020, 37(10): 100301-.
[8]
. [J]. 中国物理快报, 2020, 37(9): 90303-.
[9]
. [J]. 中国物理快报, 2020, 37(8): 89901-.
[10]
. [J]. 中国物理快报, 2019, 36(12): 124701-.
[11]
. [J]. 中国物理快报, 2018, 35(9): 90301-.
[12]
. [J]. 中国物理快报, 2018, 35(5): 50301-.
[13]
. [J]. 中国物理快报, 2018, 35(3): 30202-.
[14]
. [J]. 中国物理快报, 2017, 34(6): 60301-.
[15]
. [J]. 中国物理快报, 2017, 34(5): 50301-.