Quasiclassical-Trajectory Investigation on the Isotopic Effect of H(D)+LiF→H(D)F+Li (v =0–4, j =0) Reaction
XIE Ting-Xian1** , ZHANG Ying-Ying2,3 , SHI Ying2,3** , JIN Ming-Xing2,3
1 Department of Physics, Dalian Jiaotong University, Dalian 1160282 Institute of Atomic and Molecular Physics, Jilin University, Changchun 1300123 Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012
Abstract :A quasi-classical trajectory (QCT) method is employed to investigate the scalar properties and vector correlations of H+LiF→HF+Li and D+LiF→DF+Li reactions. The collision energy (E col =4–25 kcal/mol) and vibrational excitation effects (v =0–4) are studied by using the Aguado–Paniagua2-potential energy surface (AP2-PES) [J. Chem. Phys. 107 (1997) 10085]. The reaction probability, cross section and rate constant are calculated, which demonstrate obvious energy and vibrational excitation dependences in the probability, cross section, and a high-temperature region of the rate constant. In addition, two product angular distributions P (θr ) and P (φr ) are calculated to facilitate a deeper insight into vector correlations. The H+LiF→HF+Li and D+LiF→DF+Li reactions reveal strong isotopic effects. Moreover, these scalar and vector results of both the reactions show sensitive behaviors to the changes of vibrational levels and the collision energy.
收稿日期: 2015-04-04
出版日期: 2015-10-02
:
82.20.Fd
(Collision theories; trajectory models)
82.20.Kh
(Potential energy surfaces for chemical reactions)
82.20.Pm
(Rate constants, reaction cross sections, and activation energies)
[1] Peterson K A 2000 J. Chem. Phys. 113 4598 [2] Gogtas F 2006 Chem. Phys. 328 421 [3] Li H, Zheng B, Yin J Q and Meng Q T 2012 J. At. Mol. Sci. 3 114 [4] Takayanagi T and Kurosaki Y 1998 J. Chem. Phys. 109 8929 [5] Takayanagi T and Kurosaki Y 1999 Phys. Chem. Chem. Phys. 1 1099 [6] Paniagua M, Aguado A, Lara M and Roncero O 1999 J. Chem. Phys. 111 6712 [7] Hobel O, Menéndez M and Loesch H J 2001 Phys. Chem. Chem. Phys. 3 3633 [8] Weck P F and Balakrishnan N 2005 J. Chem. Phys. 122 154309 [9] Loesch H Jand Stienkemeier F 1993 J. Chem. Phys. 98 9570 [10] Parker G A, LaganàA, Crocchianti S and Pack R T 1995 J. Chem. Phys. 102 1238 [11] Gogtas F, Balint-karti G G and Offer A R 1996 J. Chem. Phys. 104 7927 [12] Tan R S, Liu X G and Hu M 2012 Chin. Phys. Lett. 29 123101 [13] Laganà A, Bolloni A, Grocchianti S and Parker G A 2000 J. Phys. Chem. A 324 466 [14] Cheng J and Yue X F 2011 Chin. Phys. Lett. 28 083102 [15] Becker C H, Casavecchia P, Tiedemann P W, Valentini J J and Lee Y T 1980 J. Chem. Phys. 73 2833 [16] Loesch H J and Stienkemeier F 1993 J. Chem. Phys. 99 9598 [17] Hudson A J, Oh H B, Polanyi J C and Piecuch P 2000 J. Chem. Phys. 113 9897 [18] Hobel O, Paladini A, Russo A, Bobbenkamp R and Loesch H J 2004 Phys. Chem. Chem. Phys. 6 2198 [19] Aguado A, Sufirez A and Paniagua M 1995 Chem. Phys. 201 107 [20] Aguado A, Paniagua M, Lara M and Roncero O 1997 J. Chem. Phys. 107 10085 [21] Lara M, Aguado A, Roncero O and Paniagua M 1998 J. Chem. Phys. 109 9391 [22] Paniagua M, Aguado A, Lara M and Roncero O 1998 J. Chem. Phys. 109 2971 [23] Lara M, Aguado A, Paniagua M and Roncero O 2000 J. Chem. Phys. 113 1781 [24] Aguado A, Paniagua M, Lara M and Roncero O1997 J. Chem. Phys. 106 1013 [25] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699 [26] Wang M L, Han K L, Zhan J P, Wu V W K, He G Z and Lou N Q 1997 Chem. Phys. Lett. 278 307 [27] Chen M D, Han K L and Lou N Q 2002 Chem. Phys. Lett. 357 483 [28] Chu T S, Zhang H, Yuan S P, Fu A P, Si H Z, Tian F H and Duan Y B 2009 Physica A 113 3470 [29] Yuan M H and Zhao G J 2010 Int. J. Quantum Chem. 110 1842 [30] Yang T G, Yuan J C, Cheng D H and Chen M D 2013 Commun. Comput. Chem. 1 15 [31] Li S J, Shi Y, Xie T X and Jin M X 2012 Chin. Phys. B 21 013401 [32] Yue X F and Wang M S 2012 Chem. Phys. 405 155 [33] Weck P F and Balakrishnan N 2005 J. Chem. Phys. 122 234310 [34] Yue X F 2012 Chin. Phys. B 21 073401 [35] Xie T X, Zhang Y Y, Shi Y and Jin M X 2014 Chin. J. Chem. Phys. 27 39 [36] Yao L, Zhong H Y, Liu Y L and Xia W W 2009 Chem. Phys. 359 151 [37] Li X H, Wang M S, Pino I, Yang C L and Ma L Z 2009 Chem. Phys. 11 10438 [38] Wei Q 2015 Chin. Phys. Lett. 32 013101 [39] Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201 [40] Chu T S and Han K L 2008 Phys. Chem. Chem. Phys. 10 2431 [41] Ge M H and Zheng Y J 2012 Chem. Phys. 392 185 [42] Bai M M, Ge M H, Yang H and Zheng Y J 2012 Chin. Phys. B 21 123401 [43] Guo Y H, Zhang F Y and Ma H Z 2013 Commun. Comput. Chem. 1 99 [44] Aoiz F J, Ba?ares L and Castillo J F 1999 J. Chem. Phys. 111 4013 [45] Tang B Y, Yang B H, Han K L, Zhang R Q and Zhang J Z H 2000 J. Chem. Phys. 113 10105 [46] Wu T, Werner H J and Manthe U 2006 J. Chem. Phys. 124 164307 [47] Meng Q T, Zhao J, Xu Y and Yue D G 2009 Chem. Phys. 362 65 [48] Li W L, Wang M S, Yang C L, Liu W W, Sun C and Ren T Q 2007 Chem. Phys. 337 93 [49] Xu W W, Liu X G, Luan S X, Sun S S and Zhang Q G 2009 Chin. Phys. B 18 339 [50] Zhang Y Y, Shi Y, Xie T X, Jin M X and Hu Z 2013 Chin. Phys. B 22 083402 [51] Duan Z X, Qiu M H and Yao C X 2013 Comput. Theor. Chem. 1024 69 [52] Yao C X and Zhao G J 2013 Can. J. Chem. 91 387 [53] Liu S L and Shi Y 2011 Chem. Phys. Lett. 501 197 [54] Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446 [55] Liu Y F, Gao Y L, Shi D H and Sun J F 2009 Chem. Phys. 364 46 [56] Zhao J and Luo Y 2011 Chin. Phys. B 20 043402 [57] Guo Y H, Zhang F Y and Ma H Z 2013 Chin. Phys. B 22 053402 [58] Wei Q 2014 Chin. Phys. B 23 023401