A Model on the Mn Luminescence Band Redshift with Mn(II) Doping and Aggregation within CdS:Mn Microwires
MUHAMMAD Arshad Kamran, ZHANG Yong-You, LIU Rui-Bin** , SHI Li-Jie, ZOU Bing-Suo**
Beijing Key Lab of Nanophotonics and Ultrafine Optoeletronic Systems, Beijing Institute of Technology, Beijing 100081
Abstract :We report the microphoto-luminescence band redshifts with individual and multi-Mn(II) ion emissions within CdS microwires. The localized exciton magnetic polarons (LEMPs) corresponding to the – optical transitions of Mn(II) account for this shift. This LEMP emission from the double-, three- and four-Mn(II) ions with ferromagnetic coupling after photoexcitation can happen in diluted magnetic semiconductors, except for the individual Mn(II) doping. In addition, a simple spin-exchange polaronic model is established to account for these emission peaks well. Through this model, we can verify the local geometry of the Mn(II) ions in CdS microwires.
出版日期: 2014-05-26
:
78.67.Lt
(Quantum wires)
78.60.Lc
(Optically stimulated luminescence)
75.75.Lf
(Electronic structure of magnetic nanoparticles)
71.70.Ch
(Crystal and ligand fields)
[1] Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019
[2] Berciu M and Bhatt R N 2001 Phys. Rev. Lett. 87 107203
[3] Coey J M D, Venkatesan M and Fitzgerald C B 2005 Nat. Mater. 4 173
[4] Sato K and Katayama-Yoshida H 2000 Jpn. J. Appl. Phys. 39 L555
[5] Durst A C, Bhatt R N and Wolff P A 2002 Phys. Rev. B 65 235205
[6] van Schilfgaarde M and Mryasov O N 2001 Phys. Rev. B 63 233205
[7] Raebiger H, Lany S and Zunger A 2007 Phys. Rev. Lett. 99 167203
[8] Dietl T 2000 Science 287 1019
[9] Godde T, Reshina I I, Ivanov S V, Akimov I A, Yakovlev D R and Bayer M 2010 Phys. Status Solidi B 247 1508
[10] Okada T and Itoh T 2007 J. Phys.: Condens. Matter 19 186210
[11] Bencke C, Gumlich H E and Wolff P A 1988 Diluted Magnetic Semiconductors ed Furdyna J K and Kossut J Semiconductors and Semimetals (London: Academic) vol 25 p 85 p413
[12] Chen Z H, Debnath M C, Shibata K, Saitou T, Sato T and Oka Y 2001 J. Appl. Phys. 89 6701
[13] Cui X Y, Delley B, Freeman A J and Stampfl C 2007 Phys. Rev. B 76 045201
[14] Bednarski H and Spalek J 2012 J. Phys.: Condens. Matter 24 235801
[15] Yan M, Dai G, Hu S, Zhang Q and Zou B 2011 Mater. Lett. 65 2522
[16] Pan A L, Liu D, Liu R B, Wang F F, Zhu X and Zou B S 2005 Small 1 980
[17] Singh A 2003 arXiv:0307009v1 [cond-mat]
[18] Nakamura K 2006 J. Phys. Soc. Jpn. 75 054712
[1]
. [J]. 中国物理快报, 2013, 30(6): 67201-067201.
[2]
LIU Zhan-Hui;XIU Xiang-Qian**;YAN Huai-Yue;ZHANG Rong;XIE Zi-Li;HAN Ping;SHI Yi;ZHENG You-Dou
. Gallium Nitride Nanowires Grown by Hydride Vapor Phase Epitaxy [J]. 中国物理快报, 2011, 28(5): 57804-057804.
[3]
P. Ohlckers P. Pipinys. Comment on ``Electrical Conductivity and Current-Voltage Characteristics of Individual Conducting Polymer PEDOT Nanowires'' [J]. 中国物理快报, 2009, 26(5): 59903-059903.
[4]
GUAN Xi-Meng;YU Zhi-Ping. Supercell Approach in Tight-Binding Calculation of Si and Ge Nanowire Bandstructures [J]. 中国物理快报, 2005, 22(10): 2651-2654.
[5]
CHENG Fang;ZHOU Guang-Hui;. Dynamical Transport Property through an Interacting Quantum Wire [J]. 中国物理快报, 2005, 22(8): 2039-2042.
[6]
WANG Duo-Fa;LIAO Lei;LI Jin-Chai;FU Qiang;PENG Ming-Zeng;ZHOU Jun-Ming. Synthesis and Optical Properties of ZnO Nanostructures [J]. 中国物理快报, 2005, 22(8): 2084-2087.
[7]
ZHAO Dong-Xu;LIU Yi-Chun;SHEN De-Zhen;LU You-Ming;ZHANG Ji-Ying;FAN Xi-Wu. A Thermally Activated Exciton--Exciton Collision Process in ZnO Microrods [J]. 中国物理快报, 2004, 21(8): 1640-1643.
[8]
YANG Mou;ZHOU Guang-Hui;. Electronic Transport for a Quantum Wire Partly Irradiated under THz Electromagnetic Wave [J]. 中国物理快报, 2003, 20(6): 901-904.