High-Resolution Selective Excitation of Resonance-Enhanced Multiphoton-Ionization Photoelectron Spectroscopy by Shaping Femtosecond Laser Pulses
CHENG Wen-Jing, ZHANG Shi-An** , JIA Tian-Qing** , FENG Dong-Hai, SUN Zhen-Rong
State Key Laboratory of Precision Spectroscopy and Department of Physics, East China Normal University, Shanghai 200062
Abstract :Femtosecond laser-induced resonance-enhanced multiphoton-ionization photoelectron spectroscopy (REMPI-PS) is faced with two drawbacks of low spectral resolution and poor selective excitation due to the broad spectral bandwidth. We propose a scheme to obtain a high-resolution selective excitation of (2+1) REMPI-PS by combining π and cosinusoidal phase modulation. Our theoretical results indicate that the (2+1) REMPI-PS signals related to neighboring excited states can be differentiated from their indistinguishable photoelectron spectra by the π phase modulation, and then their selective excitation can be realized by supplementally adding the cosinusoidal phase modulation. Furthermore, the physical mechanism of the high-resolution selective excitation of (2+1) REMPI-PS is explained by considering the two-photon power spectrum.
出版日期: 2014-04-24
:
33.60.+q
(Photoelectron spectra )
32.80.Qk
(Coherent control of atomic interactions with photons)
32.80.Rm
(Multiphoton ionization and excitation to highly excited states)
[1] Stolow A 2003 Annu. Rev. Phys. Chem. 54 89 [2] Stolow A 2003 Int. Rev. Phys. Chem. 22 377 [3] Wollenhaupt M, Engel V and Baumert T 2005 Annu. Rev. Phys. Chem. 56 25 [4] Ishikawa K L and Ueda K 2012 Phys. Rev. Lett. 108 033003 [5] Zhang J, Harthcock C and Kong W 2012 J. Phys. Chem. A 116 1551 [6] Schr?ter C, Kosma K and Schultz T 2011 Science 333 1011 [7] Zhang J, Harthcock C, Han F and Kong W 2011 J. Chem. Phys. 135 244306 [8] Hikosaka Y, Fushitani M, Matsuda A, Tseng C M, Hishikawa A, Shigemasa E, Nagasono M, Tono K, Togashi T, Ohashi H, Kimura H, Senba Y, Yabashi M and Ishikawa T 2010 Phys. Rev. Lett. 105 133001 [9] Shen L, Zhang B and Suits A G 2010 J. Phys. Chem. A 114 3114 [10] L épine F, Zamith S, Snaijer A, Bordas Ch and Varkking M J J 2004 Phys. Rev. Lett. 93 233003 [11] Wassaf J, V éniard V, Ta?eb R and Maquet A 2003 Phys. Rev. Lett. 90 013003 [12] Barckholtz T A, Powers D E, Miller T A and Bursten B E 1999 J. Am. Chem. Soc. 121 2576 [13] Mejia-Ospino E, García G, Guerrero A, Alvarez I and Cisneros C 2005 J. Phys. B: At. Mol. Opt. Phys. 38 109 [14] Xu H, Wu M, Zhang Z, Sun Q and Zhang W 2011 Chin. Phys. B 20 043102 [15] Liu Y, Liu R and Ding J 2009 Chin. Phys. Lett. 26 073301 [16] Liu Y, Liu R and Ding J 2010 Chin. Phys. B 19 033301 [17] Wollenhaupt M, Bayer T, Vitanov N V and Baumert T 2010 Phys. Rev. A 81 053422 [18] Wollenhaupt M, Pr?kelt A, Sarpe-Tudoran C, Liese D, Bayer T and Baumert T 2006 Phys. Rev. A 73 063409 [19] Wollenhaupt M, Pr?kelt A, Sarpe-Tudoran C, Liese D and Baumert T 2006 Appl. Phys. B 82 183 [20] Wollenhaupt M, Pr?kelt A, Sarpe-Tudoran C, Liese D and Baumert T 2005 J. Opt. B 7 S270 [21] Zhang S, Lu C, Jia T and Sun Z 2012 Phys. Rev. A 86 012513 [22] Zhang S, Lu C, Jia T, Qiu J and Sun Z 2012 J. Chem. Phys. 137 174301 [23] Zhang S, Zhang H, Jia T, Wang Z and Sun Z 2010 J. Phys. B: At. Mol. Opt. Phys. 43 135401 [24] Zhang S, Lu C, Jia T, Qiu J and Sun Z 2012 Phys. Rev. A 86 043433 [25] Meshulach D and Silberberg Y 1999 Phys. Rev. A 60 1287 [26] Bucksbaum P H 1998 Nature 396 217 [27] Shimoyamada A, Tsuda S, Ishizaka K, Kiss T, Shimojima T, Togashi T, Watanabe S, Zhang C Q, Chen C T, Matsushita Y, Ueda H, Ueda Y and Shin S 2006 Phys. Rev. Lett. 96 026403 [28] Sansonetti J E 2008 J. Phys. Chem. Ref. Data 37 1659 [29] Cheng W, Jia T, Shang X, Zhang S, Ma J, Feng D, Sun Z and Qiu J 2014 Phys. Rev. A 89 023401