The Edge Magnetization and Strip Phase of Graphene Quantum Dots with Long-Range Coulomb Interaction
LI Ning1 , ZHU Wen-Huan2 , LIANG Qi1 , DING Guo-Hui2**
1 Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 2002402 Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240
Abstract :We investigate the magnetism and optical absorption properties of charge neutral hexagonal graphene quantum dots (GQDs) terminated with zigzag edges by using a tight-binding Hubbard type model for the π electrons. Within the Hartree–Fock approximation and taking into account the long-range Coulomb interaction, our calculation yields a ferromagnetic ground state with magnetic moments localized on the edges for GQDs, and also gives an antiferromagnetism state with the energy very close to the ferromagnetism ground state. We find that both the ferromagnetic and the antiferromagnetic states have stripe patterned charge density distributions as a result of the long-range Coulomb interaction. The optical conductivity for GQDs has an energy gap in the low frequency regime in contrast to the bulk neutral graphene sheet where a universal constant is approached.
收稿日期: 2013-12-06
出版日期: 2014-03-25
:
73.21.-b
(Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)
73.20.At
(Surface states, band structure, electron density of states)
78.40.-q
(Absorption and reflection spectra: visible and ultraviolet)
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197 [3] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201 [4] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 [5] Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803 [6] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 [7] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401 [8] Xia F, Mueller T, Lin Y M, Valdes-Garcia A and Avouris P 2009 Nat. Nanotechnol. 4 839 [9] Mueller T, Xia F and Avouris P 2010 Nat. Photon. 4 297 [10] Xu N, Wang B L, Sun H Q and Ding J W 2010 Chin. Phys. Lett. 27 107303 [11] Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A and Avouris P 2010 Science 327 662 [12] Yazyev O V 2010 Rep. Prog. Phys. 73 056501 [13] Echtermeyer T J, Britnell L, Jasnos P K, Lombardo A, Gorbachev R V, Grigorenko A N, Geim A K, Ferrari A C and Novoselov K S 2011 Nat. Commun. 2 458 [14] El-Kady M F, Strong V, Dubin S and Kaner R B 2012 Science 335 1326 [15] Zhu W H, Ding G H and Dong B 2012 Appl. Phys. Lett. 100 103101 [16] Li X, Wang X, Zhang L, Lee S and Dai H 2008 Science 319 1229 [17] You Y, Ni Z, Yu T and Shen Z 2008 Appl. Phys. Lett. 93 163112 [18] Zhi L and Müllen K 2008 J. Mater. Chem. 18 1472 [19] Tang J, Liu Z L, Kang C Y, Pan H B, Wei S Q, Xu P S, Gao Y Q and Xu X G 2009 Chin. Phys. Lett. 26 088104 [20] Ritter K A and Lyding J W 2009 Nat. Mater. 8 235 [21] Yang R, Zhang L, Wang Y, Shi Z, Shi D, Gao H, Wang E and Zhang G 2010 Adv. Mater. 22 4014 [22] Lu J, Yeo P S E, Gan C K, Wu P and Loh K P 2011 Nat. Nanotechnol. 6 247 [23] Nakada K, Fujita M, Dresselhaus G and Dresselhaus M S 1996 Phys. Rev. B 54 17954 [24] Sepioni M, Nair R R, Rablen S, Narayanan J, Tuna F, Winpenny R, Geim A K and Grigorieva I V 2010 Phys. Rev. Lett. 105 207205 [25] Fujita M, Wakabayashi K, Nakada K and Kusakabe K 1996 J. Phys. Soc. Jpn. 65 1920 [26] Fernández-Rossier J 2008 Phys. Rev. B 77 075430 [27] Wakabayashi K, Fujita M, Ajiki H and Sigrist M 1999 Phys. Rev. B 59 8271 [28] Zheng H, Wang Z F, Luo T, Shi Q W and Chen J 2007 Phys. Rev. B 75 165414 [29] Kobayashi Y, Fukui K I, Enoki T, Kusakabe K and Kaburagi Y 2005 Phys. Rev. B 71 193406 [30] Tao C, Jiao L, Yazyev O V, Chen Y C, Feng J, Zhang X, Capaz R B, Tour J M, Zettl A, Louie S G, Dai H and Crommie M F 2011 Nat. Phys. 7 616 [31] Fernández-Rossier J and Palacios J J 2007 Phys. Rev. Lett. 99 177204 [32] Wang W L, Yazyev O V, Meng S and Kaxiras E 2009 Phys. Rev. Lett. 102 157201 [33] Inui M, Trugman S A and Abrahams E 1994 Phys. Rev. B 49 3190 [34] Ezawa M 2007 Phys. Rev. B 76 245415 [35] Yamamoto T, Noguchi T and Watanabe K 2006 Phys. Rev. B 74 121409 [36] Zhang Z Z, Chang K and Peeters F M 2008 Phys. Rev. B 77 235411 [37] Jiang J, Lu W and Bernholc J 2008 Phys. Rev. Lett. 101 246803 [38] Zhu W H, Ding G H and Dong B 2013 J. Appl. Phys. 113 103510 [39] Marder M P 2000 Condensed Matter Physics (New York: Wiley)
[1]
. [J]. 中国物理快报, 2022, 39(9): 97303-.
[2]
. [J]. 中国物理快报, 2018, 35(5): 57801-.
[3]
. [J]. 中国物理快报, 2017, 34(3): 36301-036301.
[4]
. [J]. 中国物理快报, 2014, 31(03): 37306-037306.
[5]
. [J]. 中国物理快报, 2013, 30(9): 96103-096103.
[6]
. [J]. 中国物理快报, 2013, 30(7): 77307-077307.
[7]
. [J]. Chin. Phys. Lett., 2012, 29(12): 127104-127104.
[8]
YAO Jiang-Hong;JIA Guo-Zhi;ZHANG-Yan;LI Wei-Wu;SHU Yong-Chun;WANG Zhan-Guo;XU Jing-Jun. Resonant Tunnelling in Barrier-in-Well and Well-in-Well Structures [J]. 中国物理快报, 2008, 25(12): 4391-4394.
[9]
XIE Wen-Fang. Binding Energies of Negatively Charged Donors in a Gaussian Potential Quantum Dot [J]. 中国物理快报, 2005, 22(7): 1768-1771.
[10]
DONG Qing-Rui;XU Ying-Qiang;ZHANG Shi-Yong;NIU Zhi-Chuan. Role of Interactions in Electronic Structure of a Two-Electron Quantum Dot Molecule [J]. 中国物理快报, 2004, 21(12): 2496-2499.
[11]
LUO Ying;DUAN Su-Qing;FAN Wen-Bin;ZAO Xian-Geng;WANG Li-Min;MA Ben-Kun. Dynamic Localization of a One-Dimensional Quantum Dot Array in an ac Electric Field [J]. 中国物理快报, 2002, 19(7): 981-984.