Cluster Structure in Be Isotopes within Point-Coupling Covariant Density Functional
TANG Zhong-Hua, LI Jia-Xing** , JI Juan-Xia, ZHOU Tao
School of Physical Science and Technology, Southwest University, Chongqing 400715
Abstract :The potential energy surfaces and density distributions of ground states in even-mass Be isotopes are studied by using the point-coupling covariant density functional theory with the PC-F1 effective interaction. The clustering structure is exhibited automatically in most of the Be isotopes. The results indicate that 6 Be has an α +2p clustering structure, while 8,10,14 Be have the 2α clustering structure. The α –α distances and the corresponding quadrupole deformation parameters have a similar evolution trend against the neutron number.
收稿日期: 2012-06-01
出版日期: 2013-03-04
:
21.60.Jz
(Nuclear Density Functional Theory and extensions (includes Hartree-Fock and random-phase approximations))
21.60.Gx
(Cluster models)
21.10.Gv
(Nucleon distributions and halo features)
21.10.Pc
(Single-particle levels and strength functions)
[1] Wheeler J A 1937 Phys. Rev. 52 1083 [2] Wheeler J A 1937 Phys. Rev. 52 1107 [3] Fulton B R 1994 Z. Phys. A 349 227 [4] von Oertzen W, Freer M and Kanada-En'yo Y 2006 Phys. Rep. 432 43 [5] Geng L S, Meng J and Toki H 2007 Chin. Phys. Lett. 24 1865 [6] Zhang W et al 2010 Chin. Phys. Lett. 27 102103 [7] Freer M, Merchant A C 1997 J. Phys. G 23 261 [8] Kanada-En'yo Y and Horiuchi H 2001 Prog. Theor. Phys. Suppl. 142 205 [9] Horiuchi H and Kanada-En'yo Y 1997 Nucl. Phys. A 616 394 [10] Seya M, Kohno M and Nagata S 1981 Prog. Theor. Phys. 65 204 [11] Fedotov S I et al 2004 Phys. Rev. C 70 014006 [12] Ichikawa T et al 2011 Phys. Rev. Lett. 107 112501 [13] Buck B et al 1995 Phys. Rev. C 52 1840 [14] Taniguchi Y, Kanada-En'yo Y and Kimura M 2009 Phys. Rev. C 80 044316 [15] Taniguchi Y et al 2007 Phys. Rev. C 76 044317 [16] Saito A et al 2010 Mod. Phys. Lett. A 25 1858 [17] Ye Y L et al 2005 J. Phys. G 31 S1647 [18] Jia F et al 2009 Chin. Phys. Lett. 26 032301 [19] Ye Y L et al 2012 Chin. Phys. C 36 127 [20] Mangelson N et al 1966 Nucl. Phys. 88 137 [21] Buck B, Friedrich H, Wheatley C 1977 Nucl. Phys. A 275 246 [22] Ashwood N I et al 2004 Phys. Lett. B 580 129 [23] Kanada-En'yo Y and Kimura M 2010 Lect. Notes Phys. 818 129 [24] Neff T, Feldmeier H and Roth R 2005 Nucl. Phys. A 752 321 [25] Descouvemont P and Baye D 2001 Phys. Lett. B 505 71 [26] Duarte S B et al 2002 At. Data Nucl. DataTables 80 235 [27] Yan T Z et al 2007 Chin. Phys. B 16 2676 [28] Qian Y B et al 2010 Chin. Phys. Lett. 27 112301 [29] Ren Z Z, Xu C and Wang Z J 2004 Phys. Rev. C 70 034304 [30] Ni D D and Ren Z Z 2011 Phys. Rev. C 83 014310 [31] Bender M, Heenen P H and Reinhard P G 2003 Rev. Mod. Phys. 75 121 [32] Fayans S A et al 2000 Nucl. Phys. A 676 49 [33] Vretenar D et al 2005 Phys. Rep. 409 101 [34] Meng J et al 2006 Prog. Part. Nucl. Phys. 57 470 [35] Arumugam P et al 2005 Phys. Rev. C 71 064308 [36] Zhong M F et al 2010 Chin. Phys. Lett. 27 022103 [37] Ebran J P et al 2012 Nature 487 341 [38] Zhao P W et al 2010 Phys. Rev. C 82 054319 [39] Yao J M et al 2009 Phys. Rev. C 79 044312 [40] Yao J M et al 2010 Phys. Rev. C 81 044311 [41] Nik?i? T et al 2009 Phys. Rev. C 79 034303 [42] Zhao P W et al 2011 Phys. Rev. Lett. 107 122501 [43] Bürvenich T et al 2002 Phys. Rev. C 65 044308 [44] Xiang J et al 2012 Nucl. Phys. A 873 1 [45] Ring P and Schuck P 1980 Nuclear Many-body Problem (Heidelberg: Springer) p 268 [46] Yao J M et al 2011 Phys. Rev. C 84 024306 [47] National Nuclear Data Center Brookhaven National Laboratory http://www.nndc.bnl.gov/ [48] Ren Z Z et al 1995 Phys. Lett. B 351 11 [49] Sugahara Y et al 1996 Prog. Theor. Phys. 96 1165 [50] Yao J M, Bender M and Heenen P H 2012 arXiv:1211.2103v1[nucl-th] [51] Yao J M et al 2012 Phys. Rev. C 86 014310
[1]
. [J]. 中国物理快报, 2023, 40(1): 12401-.
[2]
. [J]. 中国物理快报, 2021, 38(4): 42101-.
[3]
. [J]. 中国物理快报, 2020, 37(11): 112101-.
[4]
. [J]. 中国物理快报, 2019, 36(3): 32101-.
[5]
. [J]. 中国物理快报, 2018, 35(6): 62102-.
[6]
. [J]. 中国物理快报, 2017, 34(8): 82101-.
[7]
. [J]. 中国物理快报, 2016, 33(10): 102101-102101.
[8]
. [J]. 中国物理快报, 2016, 33(01): 12101-012101.
[9]
. [J]. 中国物理快报, 2015, 32(11): 112101-112101.
[10]
. [J]. 中国物理快报, 2014, 31(10): 102102-102102.
[11]
. [J]. 中国物理快报, 2014, 31(04): 42101-042101.
[12]
. [J]. 中国物理快报, 2013, 30(5): 52101-052101.
[13]
. [J]. 中国物理快报, 2013, 30(5): 52103-052103.
[14]
. [J]. Chin. Phys. Lett., 2012, 29(11): 112101-112101.
[15]
LI Lu-Lu,MENG Jie,P. Ring,ZHAO En-Guang,ZHOU Shan-Gui,**. Odd Systems in Deformed Relativistic Hartree Bogoliubov Theory in Continuum [J]. 中国物理快报, 2012, 29(4): 42101-042101.