Micro-Nanometer Parasitic Crystal Growth and Photoluminescence Property of Unique Screw-Cone Like Zn2 GeO4 -ZnO by Combustion Oxidization
YANG Xiu-Ying1 , CHENG Jun-Ye1 , LI Bin3 , CAO Wen-Qiang2 , YUAN Jie3 , ZHANG De-Qing1** , CAO Mao-Sheng3**
1 School of Materials Science and Engineering, Qiqihar University, Qiqihar 1610062 School of EMPS, University College Dublin 4, Ireland3 School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081
Abstract :screw-cone-like Zn2 GeO4 -ZnO particles with a base diameter of approximately 400 nm and a height of 400–800 nm or so were successfully synthesised by combustion oxidation of zinc and germanium powder at 960°C. No catalyst or carrier gases were used. XRD and SEM analyses reveal that Zn2 GeO4 and ZnO grew to parasitic crystals evenly in interaction with each other. EDS images exhibit the homogeneity of the distribution of Ge and Zn. The formation mechanism is discussed and attributed to the unique growth process of the screw-cone-like Zn2 GeO4 -ZnO particles and its vapour-solid (VS) growth mechanism. In addition, the Zn2 GeO4 -ZnO particles could tune the energy level structure of nano-tetrapod ZnO, which leads to the emission peak redshift from 376 nm to 435 nm and enhances the light emission intensity in the visible light region.
收稿日期: 2012-07-20
出版日期: 2012-10-01
:
81.20.Ka
(Chemical synthesis; combustion synthesis)
81.05.Dz
(II-VI semiconductors)
引用本文:
. [J]. 中国物理快报, 2012, 29(10): 108101-108101.
YANG Xiu-Ying, CHENG Jun-Ye, LI Bin, CAO Wen-Qiang, YUAN Jie, ZHANG De-Qing, CAO Mao-Sheng. Micro-Nanometer Parasitic Crystal Growth and Photoluminescence Property of Unique Screw-Cone Like Zn2 GeO4 -ZnO by Combustion Oxidization. Chin. Phys. Lett., 2012, 29(10): 108101-108101.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/29/10/108101
或
https://cpl.iphy.ac.cn/CN/Y2012/V29/I10/108101
[1] Yao I C, Lin P and Tseng T Y 2009 Nanotechnology 20 125202 [2] Yang P D, Yan H Q, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He R R and Choi H J 2002 Adv. Funct. Mater. 12 323 [3] Zhuo R F, Feng H T, Chen J T, Yan D, Feng J J, Li H J, Geng B S, Cheng S, Xu X Y and Yan P X 2008 J. Phys. Chem. C 112 11767 [4] Zhuo R F, Feng H T, Liang Q, Liu J Z, Chen J T, Yan D, Feng J J, Li H J, Cheng S, Geng B S, Xu X Y, Wang J, Wu Z G, Yan P X and Yue G H 2008 J. Phys. D: Appl. Phys. 41 185405 [5] Wang Z L, Kong X Y, Ding Y, Gao P, Hughes William L, Yang Rusen and Zhang Y 2004 Adv. Funct. Mater. 14 (10) 943 [6] Wang Z L and Song J h 2006 Science 312 242 [7] Zheng Z K, Duanmu Q D, Zhao D X, Wang L D and Shen D Z 2012 Chin. Phys. Lett. 29 017804 [8] Wu X, Jiang P, Ding Y, Cai W, Xie S S and Wang Z L 2007 Adv. Mater. 19 2319 [9] Zhao Y N, Cao M S, Jin H B, Shi X L, Li X and Agathopoulos S 2006 J. Nanosci. Nanotechnol. 6 2525 [10] Yu K, Zhang Y S, Xu R L, Jiang D S, Li Q and Zhu Z Q 2005 Solid State Commun. 133 43 [11] Park W I, Kim D H, Jung S W and Yi G C 2002 Appl. Phys. Lett. 80 4232 [12] Lewis J S and Holloway P H 2000 J. Electrochem. Soc. 147 3148 [13] Liu Z S, Jing X P and Wang L X 2007 J. Electrochem. Soc. 154 H500 [14] Bender J P, Wager J F, Kissick J, Clark B L and Keszler D A 2002 J. Lumin. 99 311 [15] Sato J, Kobayashi H, Ikarashi K, Saito N, Nishiyama H and Inoue Y 2004 J. Phys. Chem. B 108 4369 [16] Huang J H, Wang X C, Hou Y D, Chen X F, Wu L and Fu X Z 2008 Environ. Sci. Technol. 42 7387 [17] Wang Z N, Jiang M F, Ning Z Y and Zhu L 2008 Acta Phys. Sin. 57 6507 (in Chinese) [18] Tsai M Y, Yu C Y, Wang C C and Perng T P 2008 Cryst. Growth Des. 8 2264 [19] Liu Q, Zhou Y, Kou J H, Chen X Y, Tian Z P, Gao J, Yan S C and Zou Z G 2010 J. Am. Chem. Soc. 132 14385 [20] Yan S C, Wan L J, Li Z S and Zou Z G 2011 Chem. Commun. 47 5632 [21] Wan Q, Yu K and Lin C L 2003 Appl. Phys. Lett. 83 2253 [22] Mensah S L, Kayastha V K and Yap Y K 2007 J. Phys. Chem. C 111 16092 [23] Umar A, Ribeiro C, Al-Hajry A, Masuda Y and Hahn Y B 2009 J. Phys. Chem. C 113 14715 [24] Chen Y F, Tang M T and Yang S H 2005 Trans. Nonferrous Met. Soc. Chin. 15 423 (in Chinese) [25] Vanheusden K, Warren W L, Seager C H, Tallant D K and Gnade B E 1996 J. Appl. Phys. 79 7983 [26] Loong C K and Ozawa M 2000 J. Alloys Compd. 303 60 [27] Spanhel L, Haase M, Weller H et al 1987 J. Am. Chem. Soc. 109 (19) 5649
[1]
. [J]. 中国物理快报, 2021, 38(12): 126701-.
[2]
. [J]. 中国物理快报, 2014, 31(07): 78102-078102.
[3]
LI Jian-Feng;CHANG Wen-Li;TAO Chun-Lan;OU Gu-Ping;ZHANG Fu-Jia. Synthesis, Characterization of 9,9'-Bianthracene and Fabrication of 9,9'-Bianthracene Field-Effect Transistors [J]. 中国物理快报, 2008, 25(12): 4476-4479.
[4]
SHEN Cheng-Min;HUI Chao;YANG Tian-Zhong;XIAO Cong-Wen;CHEN Shu-Tang;DING Hao;GAO Hong-Jun. Monodispersive CoPt Nanoparticles Synthesized Using Chemical Reduction Method [J]. 中国物理快报, 2008, 25(4): 1479-1481.
[5]
ZHOU Yan;SHI Xiao-Ling;YUAN Jie;FANG Xiao-Yong;CAO Mao-Sheng. Dielectric Response and Broadband Microwave Absorption Properties of Three-Layer Graded ZnO Nanowhisker/Polyester Composites [J]. 中国物理快报, 2007, 24(11): 3264-3267.
[6]
SHI Xiao-Ling;YUAN Jie;ZHOU Wei;RONG Ji-Li;CAO Mao-Sheng. Preparation and Dielectric Properties of Nanostructured ZnO Whiskers [J]. 中国物理快报, 2007, 24(10): 2994-2997.
[7]
YANG Da-Peng;LI Ying-Ai;YANG Xu-Xin;DU Yong-Hui;JI Xiao-Rui;GONG Xi-Liang;SU Zuo-Peng;ZHANG Tie-Chen. Chemical Synthesis and Characterization of Flaky h-BCN at High Pressure and High Temperature [J]. 中国物理快报, 2007, 24(4): 1088-1091.
[8]
SU Zuo-Peng;DU Yong-Hui;JI Xiao-Rui;YANG Da-Peng;YANG Xu-Xin;GONG Xi-Liang;ZHANG Tie-Chen. Synthesis of Cubic Boron Nitride by the Reaction of Li3 N and B2 O3 [J]. 中国物理快报, 2006, 23(8): 2285-2287.
[9]
FENG Lin;WANG Yan-Ling;REN Quan;ZHGNG Guang-Hui;YANG Hong-Liang;SUN Xiang-Bing. Third-Order Optical Nonlinearity of a Novel Material: (Tetramethylammonium)bis(1,3-dithiole-2-thione-4,5-dithiolato) Copper [J]. 中国物理快报, 2005, 22(11): 2834-2836.
[10]
DU Yu-Lei;ZHANG Ming-Sheng;DENG Yu;CHEN Qiang;YIN Zhen;CHEN Wan-Chun. Structural Characteristics and Photoluminescence of Zinc Oxide
Nanocrystals [J]. 中国物理快报, 2002, 19(3): 372-374.