摘要We study the quantum discord and teleportation of a two-qubit Heisenberg XXX chain with spin-orbit interaction. The analytical expressions of quantum discord, output state quantum discord and fidelity are obtained for this model. The classical correlation, quantum correlation and entanglement of this system depending on coupling interaction, spin-orbit interaction and temperature are investigated in detail. It is found that the quantum discord exists for the ferromagnetic case, but entanglement is zero under the same condition. We can obtain fidelity better than any classical communication protocol for the antiferromagnetic case. The robustness of quantum discord against the temperature is helpful for the realization of quantum computation.
Abstract:We study the quantum discord and teleportation of a two-qubit Heisenberg XXX chain with spin-orbit interaction. The analytical expressions of quantum discord, output state quantum discord and fidelity are obtained for this model. The classical correlation, quantum correlation and entanglement of this system depending on coupling interaction, spin-orbit interaction and temperature are investigated in detail. It is found that the quantum discord exists for the ferromagnetic case, but entanglement is zero under the same condition. We can obtain fidelity better than any classical communication protocol for the antiferromagnetic case. The robustness of quantum discord against the temperature is helpful for the realization of quantum computation.
QIN Meng**, ZHAI Xiao-Yue, CHEN Xuan, LI Yan-Biao, WANG Xiao, BAI Zhong. Effect of Spin-Orbit Interaction and Input State on Quantum Discord and Teleportation of Two-Qubit Heisenberg Systems[J]. 中国物理快报, 2012, 29(3): 30305-030305.
QIN Meng, ZHAI Xiao-Yue, CHEN Xuan, LI Yan-Biao, WANG Xiao, BAI Zhong. Effect of Spin-Orbit Interaction and Input State on Quantum Discord and Teleportation of Two-Qubit Heisenberg Systems. Chin. Phys. Lett., 2012, 29(3): 30305-030305.
[1] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[2] Xue Z Y, Zhu S L and Wang Z D 2009 Eur. Phys. J. D 55 223
[3] Meyer D A 2000 Phys. Rev. Lett. 85 2014
[4] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[5] Lanyon B P, Barbieri M, Almeida M P and White A G 2008 Phys. Rev. Lett. 100 200501
[6] Luo S L 2008 Phys. Rev. A 77 022301
[7] Ding B F, Wang X Y, Liu J F, Yan L and Zhao H P 2011 Chin. Phys. Lett. 28 104216
[8] Zhang G F, Jiang Z T and Abliz A 2011 Ann. Phys. 326 867
[9] Werlang T, Souza S, Fanchini F F and Boas C J V 2009 Phys. Rev. A 80 024103
[10] Cui J, Fan H 2010 J. Phys. A 43 045305
[11] Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
[12] Zhang G F, Fan H, Ji A L, Zhao T, Abliz A and Liu W M 2011 Ann. Phys. 326 2694
[13] Maziero J, Werlang T, Fanchini F F, Cćeri L C and Serra R M 2010 Phys. Rev. A 81 022116
[14] Dillenschneider R and Lutz E 2009 Europhys. Lett. 88 50003
[15] Zhang G F, Hou Y C and Ji A L 2011 Solid State Commun. 151 790
[16] Knill E and Laflamme R 1998 Phys. Rev. Lett. 81 5672
[17] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[18] Henderson L and Vedral V 2001 J. Phys. A 34 6899
[19] Hao X, Ma C and Sha J Q 2010 J. Phys. A 43 425302
[20] Zhang G F 2007 Phys. Rev. A 75 034304
[21] Lee J and Kim M S 2000 Phys. Rev. Lett. 84 4236
[22] Bowen G and Bose S 2001 Phys. Rev. Lett. 87 267901
[23] Jozsa R 1994 J. Mod. Opt. 41 2315